Breiter Planet Hydrogen Blog

‘Low-cost renewable hydrogen may already be in reach’

Jun 30, 2021 9:30:00 AM / by Max Hall, pv magazine posted in Solar Finance, California, Policy, United States, Markets, Utility-Scale PV, Finance, India, Germany, Hydrogen, Spain, Green Hydrogen, China, World, utility scale storage, Australia, Sustainability, Industrial PV, Commercial PV, Japan, Utility Scale Markets, Hydrogen Production, Canada, Green Finance, United Arab Emirates, Markets & Policy, united kingdom, Hydrogen Economy, Saudi Arabia

0 Comments

Can the Middle East open the door to affordable clean hydrogen?

Image: Ghadir Shaar

 

A report by the International Renewable Energy Agency (IRENA) has suggested affordable green hydrogen could already be obtainable, based on the record-breaking low prices for solar negotiated in the Middle East.

Solar electricity tariffs of $0.0157, $0.0135 and $0.0104 per kilowatt-hour agreed in Qatar, the United Arab Emirates and Saudi Arabia, respectively, in the last 18 months, would enable renewables-powered hydrogen to be produced for as little as $1.62 per kilogram, according to IRENA's Renewable Power Generation Costs in 2020 report.

The Abu Dhabi-based international body made its calculations – all of which are in U.S. dollars – based on the $0.0104 solar power tariff agreed in Saudi Arabia in April, with green hydrogen generation being modeled at the Dumat al Jandal site in the kingdom which boasts strong solar and wind power resources. With the site already hosting a wind farm, IRENA modeled a hydrogen plant which would also harness solar and be connected to the grid. The report suggested lack of a grid connection would raise the renewable hydrogen cost to $1.74/kg, which still compares favorably to the current $1.45-2.40/kg price of hydrogen production powered by natural gas and equipped with carbon capture and storage (CCS) tech.

 

Further extrapolating the costs, the study estimated a fall in hydrogen electrolyzer costs, from $750 per kilowatt of capacity to $350, would enable renewable hydrogen production for $1.16/kg. Raising electrolyzer efficiency to 72.5% and extending stack lifetime from 15 to 17.5 on top of that, IRENA said, could take green hydrogen below the prized $1/kg point.

With this year's renewables price report explaining how the three tariffs secured in the Middle East since January 2020 can be regarded as viable without any hidden caveats or subsidy, the authors of the study stated: “low-cost renewable hydrogen may already be in reach.”

The document fleshed out how up to 800 GW of coal-fired power generation capacity worldwide could already be replaced by newly-built renewable energy facilities as solar and wind prices have dipped under the cost of running legacy fossil fuel plants in many markets. That estimate included a $5/MWh cost of integrating renewables into the electric grid and IRENA said, with around 40% of that overpriced capacity – and 37% of actual generation – based in Bulgaria, Germany, India and the United States, decommissioning could save around $32 billion per year in energy costs. Making the switch would also eliminate three gigatons of carbon emissions – 20% of what IRENA estimates is needed to keep global heating to a maximum 1.5 degrees Celsius this century.

The data

The latest edition of the report is based on data from around 20,000 renewables generation facilities worldwide which account for 1.9 TW of generation capacity, and on clean energy auction prices and power purchase agreements which add up to 582 GW of capacity. All the figures in the study exclude any form of subsidy and the authors point out, adding CCS to the world's overpriced coal plants would merely drive up their costs further.

IRENA has estimated all of Bulgaria and Germany‘s coal plants will this year cost electricity bill payers more than new renewables facilities would, based on a European carbon emissions price of €50 per ton. Even without an emissions trading scheme in the U.S. and India, the picture is similar, with 77-91% of American coal plants and 87-91% of Indian facilities also overpriced.

That conclusion is based on an estimated levelized cost of energy (LCOE) for solar power in India this year of $0.033/kWh, down from $0.038 last year; and of $0.031 in the States this year, although the report's authors note the solar module price has picked up between 1% and 9% in the first quarter of this year, thanks to shortages of raw materials such as polysilicon.

 

With the global LCOE of solar having fallen 7% from 2019 to last year, from $0.061 to $0.057/kWh, India led the world for low-price PV last year, with an average LCOE of $0.038/kWh for utility scale generation, ahead of China, with $0.044, and Spain, with $0.046. The authors noted Turkey also rapidly reduced average solar tariffs, to $0.052 last year, and Australia posted an average $0.057.

That translated into average solar project development costs of $596 per kilowatt installed in India, the world's lowest figure and down 8% from Indian costs in 2019. Solar projects in Vietnam came in to $949/kW and were only $796/kW in Spain last year, the report added. At the other end of the scale, projects in Russia cost $1,889/kW and, in Japan, $1,832, with those two countries exceptional among the 19 markets studied as the cost differences between areas from Canada (at $1,275/kW) down to India, were more evenly distributed.

Auction results posted last year, for projects expected to be commissioned this year and next, prompted IRENA to estimate the global average solar power price will fall to $0.039/kWh this year before rising slightly to $0.04 next year, which would still be a 30% fall on this year's figure and 27% less than the LCOE to be expected from new-build coal plants. With the predictions based on 18.8 GW of renewables capacity expected this year and 26.7 GW due in 2022, the study estimated 74% of the clean energy facilities expected this year and next will be cheaper than new fossil fuel generation sites.

Cheaper

Renewables are already making real headway, of course, with IRENA calculating 45.5 GW of the solar added last year was among the 62% of the 162 GW of clean energy facilities which were installed more cheaply than new-build coal plants.

Digging into the solar statistics, the report said mainstream solar panel costs in December ranged from $0.19 to $0.40 per Watt, for an average price of $0.27, with thin-film products averaging $0.28/W.

Operations and maintenance costs came in at an average of $17.80/kW last year in OECD countries and $9 elsewhere, in a year which also saw non-panel, balance-of-system equipment costs account for 65% of total project expense.

For residential solar arrays, average system prices in the 19 markets studied by IRENA ranged from $658/kW in India to $4,236 in California, for LCOE figures from $0.055/kWh in India to $0.236 in the U.K. For commercial systems, India was again the cheapest place to invest last year, at an average $651/kW, but a business in California would have to find $2,974/kW. Those system costs translated into LCOE numbers ranging between $0.055 in India and $0.19 in Massachusetts.

 

This article originally appeared on pv-magazine-usa.com, and has been republished with permission by pv magazine (www.pv-magazine.com and www.pv-magazine-usa.com).

Read More

FPL ‘green’ hydrogen pilot could herald a scale-up using solar and wind resources

Mar 16, 2021 9:30:00 AM / by Tim Sylvia, pv magazine posted in Policy, Energy Storage, Markets, Business, Installations, Solar Cost & Prices, Grids, Integration, Technology, Sustainability, Utility Scale Markets, Renewables, Procurement, Markets & Policy, Florida

0 Comments

Image: Siemens

 

Within Florida Power & Light’s (FPL) recently-filed four-year rate request with the Florida Public Service Commission is a commitment to “investments to build a more sustainable energy future.”

The pledge in the regulatory filing includes the utility’s “30-by-30” plan to install 30 million solar panels in Florida by 2030, as well as plans to build what the utility said would be the world’s largest integrated solar-powered battery and a green hydrogen pilot project.

The battery system is the Manatee Energy Storage Center, a 409 MW behemoth that could begin serving customers in late 2021. FPL’s Gulf Power unit said on Feb. 25 that it had begun construction on the project. The project is expected to help speed the retirement of aging natural gas units at a nearby power plant.

The green hydrogen pilot project was first announced by NextEra Energy, FPL’s parent company, in July 2020.

NextEra plans to invest $65 million into the pilot, which will use power from otherwise curtailed solar energy to produce green hydrogen via a 20 MW electrolysis system.

It’s worth noting that NextEra ranks as one of the nation’s largest solar and wind developers. So, although a 20 MW pilot may not initially move the needle toot much, NextEra’s vast wind and solar also comes with a lot of curtailed renewable generation. If the pilot proves successful and scalable, the company could look toward a serious buildout of more hydrogen producing facilities that could replace fossil fuels.

For now, the green hydrogen produced as part of the pilot would replace some of the natural gas combusted at FPL’s 1.75 GW Okeechobee power plant. Rather than build a new hydrogen plant, FPL is retrofitting an existing plant to accommodate the fuel source.

 

This article originally appeared on pv-magazine-usa.com, and has been republished with permission by pv magazine (www.pv-magazine.com and www.pv-magazine-usa.com).

Read More

Novel algorithm for integrating solar, wind, hydrogen

Feb 11, 2021 9:30:00 AM / by Emiliano Bellini, pv magazine posted in Policy, Markets, Utility-Scale PV, Hydrogen, Green Hydrogen, utility scale storage, Technology, Markets & Policy, Technology & R&D, Saudi Arabia, Egypt

0 Comments

The proposed algorithm was validated on a hybrid system for application in both off-grid and on-grid scenarios.

Image: Frerk Meyer/Flickr

 

Researchers from Saudi Arabia's Qassim University and the Minia University, and the Aswan University in Egypt, have developed a new model to integrate PV, wind, and hydrogen generation in a hybrid system for application in both off-grid and on-grid scenarios.

The model is based on a metaheuristic algorithm called Improved Artificial Ecosystem Optimization (IAEO), which the scientists claim is an improved version of the conventional Artificial Ecosystem Optimization (AEO) algorithm. The latter is a nature-inspired algorithm known for mimicking three typical behaviors of living organisms, such as production, consumption, and decomposition.

The producers are any kind of green plant and consumers are animals that cannot make their food and, therefore, obtain it from a producer or other consumers. Decomposers are agents that feed on both producers, in the form of dead plants, and consumers, in the form of waste from living organisms. In an AEO algorithm, there is only one decomposer and one producer, and the other individuals are considered consumers.

The AEO works according to these three phases and is commonly used to optimize the flow of energy in an ecosystem on the earth. “The ecosystem can be expressed as a group of living organisms [which] live in a certain space, and the ecosystem describes the relations between them,” the researchers said, adding that IAEO is mainly intended at improving the consumption phase.

The proposed energy system consists of PV and wind power generation, a water electrolyzer, a tank of hydrogen gas, a fuel cell, and an inverter that brings the generated electricity to final consumers. “The hybrid system is suggested to be located in [the] Ataka region, [in the] Suez gulf (latitude 30.0, longitude 32.5), Egypt, and the whole lifetime of the suggested case study is 25 years,” the scientists specified.

 

 

In this configuration, which the academics have assessed for both off-grid and grid-connected projects, wind and solar plants are used to power the electrolyzer that produces hydrogen, which is then stored in the tank and used to produce electricity through the fuel cell. The inverter receives electricity from the fuel cell and also surplus power from the wind and solar facilities. “When the level of hydrogen in the tank becomes below the lowest allowable level, the shortage in the electrical energy required to store the hydrogen gas in the tank is dispatched from the national grid,” they further explained.

Both the IAEO and conventional AEO algorithms were applied for generating the optimal design for the system. “In the case of the isolated configuration, when the electrical power produced from PV and wind resources is higher than the load needs plus the rated power of the electrolyzer, a dummy load is used for generation-demand balance,” the Saudi-Egyptian group stated.

The IAEO algorithm was validated in six different configurations of the proposed hybrid system and, according to the research team, has provided better results not only compared to the AEO, but also to other kinds of algorithms. “The proposed IAEO algorithm provides fast convergence characteristics, the best minimum values of the objective function, and minimum cost of energy,” it concluded. “Based on the optimal configuration of the hybrid systems, it is found that the fuel cell system has the highest contribution to the net present cost.”

 

This article originally appeared on pv-magazine-usa.com, and has been republished with permission by pv magazine (www.pv-magazine.com and www.pv-magazine-usa.com).

 

The model was presented in the paper An improved artificial ecosystem optimization algorithm for optimal configuration of a hybrid PV/WT/FC energy system, published in the Alexandria Engineering Journal.

 

 

Read More

Global green hydrogen project pipeline reaches 50 GW

Sep 14, 2020 10:00:00 AM / by Emiliano Bellini, pv magazine posted in Policy, United States, Energy Storage, Markets, Germany, Hydrogen, Europe, Spain, Green Hydrogen, China, Global, World, utility scale storage, Grids, Integration, Sustainability, Japan, Hydrogen Production, Markets & Policy, Hydrogen Economy, Saudi Arabia, South Korea

0 Comments

The world already has a nascent hydrogen economy, according to IEEFA.

Image: Roy Luck/Flickr

 

The Institute for Energy Economics and Financial Analysis (IEEFA) estimates there are 50 green hydrogen projects under development worldwide. Those projects, have a planned annual production capacity of 4 million tons of hydrogen and a total renewable power capacity of 50 GW, according to the Ohio-based thinktank, with their combined capital cost estimated at $75 billion.

In its Asia, Australia and Europe Leading Emerging Green Hydrogen Economy, but Project Delays Likely study, IEEFA said the projects announced represent an embryonic global green hydrogen economy.

“Most of these 50 projects are at an early stage, with just 14 having started construction and 34 at a study or memorandum-of-understanding stage,” the report noted. “However, many of the 50 newly-announced green hydrogen projects could face delays due to uncertain financing, cumbersome joint venture structures and unfavorable seaborne-trade economics.”

The study stated the majority of the projects announced will begin commercial operation in the middle of the decade, with large scale facilities starting up in 2022-23 and 2025-26.

The report’s authors said the hydrogen strategies of China, Japan and South Korea appear to prioritize hydrogen generated using natural gas – designated grey hydrogen, or blue if facilities are intended to feature carbon capture technology – rather than ‘green’ hydrogen generated using renewable energy. IEEFA described the €430 billion ($507 billion) hydrogen strategy of the European Union as the the most ambitious and purposeful energy transition policy to date.

 

“The EU’s hydrogen capex [capital expenditure] commitment far outweighs the commitment from Korea and Japan, reflecting the EU’s ambition to remodel its energy system and vertically integrate the hydrogen value chain with wind and solar power, electrolysis, distribution and applications,” stated the report.

Annual green hydrogen demand could reach 8.7 million tonnes by 2030, according to the IEEFA study, prompting a big supply shortfall given the current capacity of the project pipeline.

The report lists all publicized projects, including five facilities announced in the last two months – an 85 MW Nikola Motor Company plant in the U.S.; a 4 GW facility in Saudi Arabia planned by Air Products, Acwa Power and Neom; a 20 MW electrolyser being developed by U.S. energy company NextEra; a 100 MW solar park, storage facility and hydrogen production site in Puertollano, central Spain, by Iberdrola; and a 30 MW electrolyzer project by German consortium WestKüste100.

“There remains ample room for more hydrogen projects to meet global demand and further policy support will be necessary to grow this nascent industry,” added the report’s authors.

 

Schedule a Call with us today to see how we can work together and help transition to a clean energy economy.

SCHEDULE A CALL WITH US

 

Read More

Adani chief talks solar and hydrogen storage opportunity

Jun 26, 2020 9:15:00 AM / by Uma Gupta, pv magazine posted in Policy, Markets, Utility-Scale PV, Modules, Finance, India, Hydrogen, Green Hydrogen, Highlights, World, utility scale storage, Employment, Utility Scale Markets, Covid-19, Green Finance, Upstream Manufacturing, Markets & Policy

0 Comments

Early this year Adani announced his company’s goal to become the world’s largest solar power company by 2025 and the largest renewable power company by 2030.

Image: Life tech/Flickr

 

Covid-19 presents an opportunity to pause, rethink, and design a new and faster transition to a cleaner energy future, said Adani Group chairman Gautam Adani recently in his LinkedIn post.

“The [clean energy] transition could lead to investment opportunities of US$ 19 trillion in solar, wind, battery storage, green Hydrogen, carbon management and energy efficiency by 2050, making it one of the largest global industries”—Adani quoted a recent forecast by the International Renewable Energy Agency (IRENA).

“Employment in the clean energy sector, currently at 12 million in 2020, could quadruple by 2050, while jobs in energy efficiency and system flexibility could grow by another 40 million.”

Adani believes India, in particular, is well-positioned to benefit from the transition as it is naturally endowed with very high levels of solar resources, and the long coastline makes an attractive proposition for wind power.

Falling solar prices in favour

With technology driving prices down, renewables would supplement fossil fuels in the short term and emerge as the favoured option in the long term.

Adani quoted an MIT research paper to share that the price of solar modules has dropped 99% over the past 40 years. Going by the trend, he expects prices to drop by an additional 99% over the next 40 years – probably reducing the marginal cost of electricity to zero.

“Such a reduction, in turn, will mean the coexistence of two business models – one based on fossil fuels and the other driven by renewables – both supplementing each other in the near future but the pendulum swinging decidedly in favour of renewables in the long-term,” he wrote.

Adani said many of the [power] system operators in Europe, faced with falling [electricity] demand, are learning to manage grids at a remarkably high level of renewables in the energy mix, often up to 70%.

“While the generation balance may swing back as [electricity] demand increases, the crisis has provided insights to operators on keeping the grid stable with high levels of renewable penetration. Post Covid-19, this may be the new norm,” he said.

Hydrogen storage, a potential game changer

With increasing investor confidence in solar and wind, their integration with various storage technologies will further accelerate the energy transition, said Adani, highlighting hydrogen as the predominant storage technology on the horizon.

“With the prospect of the future marginal cost of renewable energy dropping precipitously, green Hydrogen produced by the splitting water could be the game-changer.

“This Hydrogen could use much of the existing gas pipeline network for distribution, be blended with natural gas and be a green feedstock for the chemical industry. Add to this the fact that the energy density of a kilogram of Hydrogen is almost three times that of gasoline, and you have a momentum that would be near impossible to stop as Hydrogen fuel cell vehicle prices come down,” he said.

 

Inteerested in how to make green hydrogen work for your property or business? Schedule a call with us here to learn more:

SCHEDULE A CALL WITH US

 

 

This article originally appeared on pv-magazine-india.com, and has been republished with permission by pv magazine (www.pv-magazine.com and www.pv-magazine-india.com.)

Read More

Iberdrola and Enel, among the main energy companies that advocate promoting green hydrogen

Jun 23, 2020 9:30:00 AM / by Pilar Sanchez Molina, pv magazine posted in Renewable Energy, Policy, Politics, Energy Storage, Markets, Decarbonize, Decarbonization, Hydrogen, Europe, Spain, Energy Transition, Green Hydrogen, Sustainability, Electrolysis, Renewables, Clean Energy, Markets & Policy

0 Comments

 

The "Choose Renewable Hydrogen" initiative, led by the employers Solar Power Europe and WindEurope and currently formed by Akuo Energy, BayWa re, EDP, Enel, Iberdrola, MHI Vestas, Solar Power Europe, Ørsted, Vestas and Wind Europe, remitted this Monday a letter to the vice-president of the European Commission, Frans Timmermans asking the European Commission to bet on the "most efficient, sustainable and profitable" ways to decarbonise the economy.

Among the correct decisions for the next integration of Europe's energy system, the importance of green hydrogen stands out, which will play "a key role as the most profitable and sustainable solution for total decarbonisation".

In that sense, direct electrification is pointed out to be the main means to decarbonize heating and road transport, but there are other difficult sectors to eliminate, such as heavy industry, long-distance road transport, aviation and transport. maritime, where direct electrification is insufficient. Here, renewable hydrogen will play a key role as the most cost-effective and sustainable solution for complete decarbonization.

Clean hydrogen has been one of the topics highlighted in the EU's ecological recovery plans, which will be announced this Wednesday: according to the draft published by the portal specialized in European affairs EurActiv, there will be 1.3 billion for R + D + i and another 10 billion co-financing in the next decade , to minimize the risk of large projects, as well as a “commitment” to reach 1 million tons of this gas.

For its part, Iberdrola announced in mid-March that it will build one of the largest green hydrogen plants in Europe in Puertollano , with an investment of 150 million euros.

 

This article originally appeared on pv-magazine.es and has been republished with permission by pv magazine (www.pv-magazine.com and www.pv-magazine.es).

Read More

New hydrogen fund: Can we get bang from 300 million bucks?

Jun 9, 2020 9:30:00 AM / by Natalie Filatoff, pv magazine posted in Policy, Markets, Finance, Decarbonize, Decarbonization, Hydrogen, Green Hydrogen, Highlights, Australia, Technology, Electrification, Sustainability, Electrolysis, Clean Energy, Markets & Policy, Technology & R&D

0 Comments

Renewable energy makes sense of hydrogen.

Image: Australian Energy Market Operator (AEMO)

 

This morning Federal Government Ministers Mathias Cormann and Angus Taylor announced a $300 million Advancing Hydrogen Fund in terms of a panacea:

“From cheaper energy bills and job creation in regional Australia, to playing a role in reducing global emissions both at home and in countries that buy Australian produced hydrogen, the industry’s potential cannot be ignored,” said Energy and Emissions Reduction Minister Taylor in the joint announcement.

The fund is designed to mesh with priorities under the national Hydrogen Strategy and as such will back areas that advance hydrogen production, developing export and domestic supply chains, establishing hydrogen hubs and building domestic demand for hydrogen.

Just a month ago, BloombergNEF released a report, Hydrogen Economy Outlook, which concluded that only a widespread global commitment to net zero emissions could generate the kind of investment — it calculated the need for US$150 billion in cumulative subsidies to 2030 — required to bring down the cost of producing hydrogen and make it competitive with other fuels.

Hydrogen is not a free kick

“Once you set a net zero target, and are serious about putting policies and measures in place to achieve that, then hydrogen becomes a necessary option,” Kobad Bavhnagri, Global Head of Industrial Decarbonisation at BNEF and lead author of the report, told pv magazine at the end of March.

“If you don’t have that clarity and that purpose,” Bhavnagri continued, “then actually there’s no need to do hydrogen and it won’t stand up.” A higher cost, less convenient energy source than fossil fuels such as coal, gas and oil, hydrogen only starts to make sense when the demand is created for a zero-emissions alternative.

Bhavnagri explained that development of hydrogen is a global task. It requires mass participation to achieve the economies of scale that will make hydrogen viable.

Based on fuel prices in March, the Hydrogen Economy Outlook estimated, for example, that if the electrolysers used to produce hydrogen from water (one method of hydrogen production that lends itself to using renewable energy to power the process of atom splitting) could be driven dramatically down in cost by demand and manufacturing efficiencies, renewable hydrogen could be produced for US$0.8 to US$1.6/kg by 2050. This was then equivalent to gas priced at US$6-12/MMBtu, making it competitive with natural gas.

Australia’s Federal Government has set the open-ended goal — dubbed ‘H2 under 2’ — of producing hydrogen for AU$2 a kilogram as part of its as yet unreleased but much anticipated Technology Investment Roadmap.

Its $300 million Advancing Hydrogen Fund is to be administered by the Clean Energy Finance Corporation (CEFC), which this morning welcomed the announcement of its amended mandate to make the $300 million available from its existing funds. 

“We are confident we can use our capital to help build investor confidence in the emerging hydrogen sector,” said CEFC CEO, Ian Learmonth.

It’s not easy staying green

This morning’s CEFC statement also emphasised that, “In line with the CEFC Act, projects seeking CEFC finance through the Advancing Hydrogen Fund are required to be commercial, draw on renewable energy, energy efficiency and/or low emissions technologies and contribute to emissions reduction.”

The CEFC says that from the allocated Advancing Hydrogen Fund it anticipates providing either debt or equity finance to eligible larger-scale commercial and industrial projects likely to require $10 million or more in CEFC capital, alongside finance raised from other sources.

CEFC identifies an early priority for funding to coincide with the Australian Renewable Energy Agency (ARENA) $70 million Renewable Hydrogen Deployment Fund. 

This ARENA funding round opened on 15 April, and expressions of interest are currently set to close on 26 May. Outcomes are expected to be announced on 30 November this year.

“We see green hydrogen as offering the most credible pathway to decarbonisation for high emitting sectors and those which lack scaleable electrification options,” said CEFC’s Learmonth. CEFC identifies some of these sectors as manufacturing, heavy transport such as trucks and shipping, mining, processing of metals and production of chemicals.

Exports going nowhere: use it on shore

One clear point of departure between BNEF’s Hydrogen Economy Outlook and the stated ambitions of the Government Advancing Hydrogen Fund is in relation to hydrogen as an export industry for Australia.

Cormann describes the Fund as a “catalyst for the future growth of Australia’s hydrogen industry,” which has the potential to become “a major new export industry”. Taylor adds the commitment made in the National Hydrogen Strategy, launched in November last year, “to build Australia’s hydrogen industry into a global export industry by 2030”.

Bhavnagri, on the other hand, found in his BNEF report that, “the economics of exporting hydrogen by ship are very poor”.

He told pv magazine, “This narrative about Australia being able to export hydrogen is a bit misplaced … Hydrogen is not like natural gas; it’s far less dense and has a liquefaction temperature much lower than natural gas, so it’s just much harder to put on a ship in a liquefied state — it’s really expensive to do.”

He concluded that “Australia can be a hydrogen superpower by using it onshore and exporting value-added products.”

Both the Australian Government and BNEF champion the establishment of hydrogen hubs, with BNEF explaining the efficiencies that such developments could offer: hubs might include clusters of wind-and-solar-powered electrolysers, and large storage facilities to smooth and buffer hydrogen supply, served by networks of dedicated pipelines feeding hydrogen to co-located industrial customers. 

Renewable resource can make Australia’s hydrogen the cheapest

Writing in BNEF’s Hydrogen Economy Outlook, Bhavnagri notes: “Our analysis suggests that a delivered cost of green hydrogen of around US$2/kg in 2030 and US$1/kg in 2050” is achievable in China, India and Western Europe. Countries with the best renewable and hydrogen storage resources, such as Australia, could achieve 20-25% reductions on these costs.

But BNEF cautions that even at US$1/kg the use of hydrogen in place of fossil fuels is still likely to require a carbon price or other policy measures to make it the most attractive option: “This is because hydrogen must be manufactured, whereas natural gas, coal and oil need only to be extracted, so it is likely to always be a more expensive form of energy.”

Ultimately Bhavnagri is optimistic about the potential for hydrogen to help decarbonise the planet, and to open new opportunities for green manufacturing in Australia that could significantly boost employment opportunities.

Signs of hydrogen life

The Hydrogen Economy Outlook said investors keen to be involved in hydrogen projects should look out for evidence of seven key events that signal opportunity for green hydrogen to scale as needed to provide a viable alternative to fossil fuels, and act as an accelerator to decarbonisation . In order of importance, the first three indications are:

  1. Legislation of net-zero climate targets
  2. Harmonisation of international standards governing hydrogen use
  3. Introduction of targets with investment mechanisms

We now have an investment mechanism, administered by a trusted body which has previously facilitated almost $28 billion worth of clean-energy projects in Australia since its inception in mid-2012, but this investment seems still untethered from Government political will and policy needed to reach net zero emissions within a timeframe that will help global citizens avoid the next looming threat to our lives. Prosperity assumes a healthy planet.

 

Schedule a call with us to see how Green Hydrogen can help take you further.

SCHEDULE A CALL WITH US

 

This article originally appeared on pv-magazine-usa.com, and has been republished with permission by pv magazine (www.pv-magazine.com and www.pv-magazine-usa.com).

Read More

Electrolyzer overview: Lowering the cost of hydrogen and distributing its production

May 26, 2020 9:15:00 AM / by Cornelia Lichner, pv magazine posted in Policy, Energy Storage, Markets, Installations, Germany, Italy, Canada

0 Comments

Image: Shell Rheinland

 

 

Jan-Justus Schmidt has announced what could be a minor revolution in the hydrogen economy. A small device, about the size of a microwave oven, would enable any household to produce the chemical element. The Enapter founder and CEO says that the devices can already produce hydrogen for less than $7.60/kg. Before 2030, he wants to bring that figure down to $1.60/kg.

Schmidt is looking to achieve what many before him have tried and failed to do. He’s looking to create a system that produces hydrogen for self-consumption and for use as seasonal storage. The targeted costs are promising, provided there is cheap green electricity to power the electrolyzers.

Schmidt is not the only one to pursue this revolution. Several small and large companies are in the starting blocks. Central versus distributed is not only an issue in power generation. There is also lively debate about which approach is more promising for the production of green hydrogen.

Savings potential

Generating hydrogen is simple in principle. Electrolysis has been around since 1800. The method known as alkaline electrolysis has been in commercial use since the middle of the 20th century. It uses a cell with a cathode, an anode and an electrolyte based on a solution of caustic salts. When voltage is applied, water decomposes in the alkaline solution. Hydrogen is formed at the cathode and oxygen at the anode. Between the two electrodes is a membrane that only allows negatively charged ions of oxygen and hydrogen (OH-) to pass through, thus separating the gases. Heat is generated during the reaction which, when harnessed, increases its efficiency. The hydrogen obtained must then be cleaned, dried and if necessary, compressed.

The electrolyte is liquid, which means that the alkaline electrolyzer requires more peripheral equipment, such as pumps for the electrolyte, solution washing, and preparation. Although it is currently the cheapest of all electrolysis processes to purchase, it has relatively high maintenance costs.

The much more recent electrolysis method, which uses a proton exchange membrane (PEM), is different. It reverses the fuel cell principle and requires no liquid electrolyte. Water is pressed through a stack of two electrodes and a polymer membrane. It only allows positively charged hydrogen protons to pass through. Platinum is usually used as a catalyst in the cell. The thin cells consisting of a membrane and a pair of electrodes can be arranged in stacks to achieve better performance. Compared to alkaline electrolysis, PEM electrolysis has the advantage of quickly reacting to the fluctuations typical of renewable power generation. This technology is often used for distributed systems because the equipment is low-maintenance and delivers high-quality gas.

A newer variant is the anion exchange membrane (AEM) electrolysis employed by Enapter. Like alkaline electrolysis, this method allows negatively charged ions (OH-) to pass through the membrane. AEM avoids the use of the costly precious metals required as catalysts in PEM electrolysis. The process is also effective at smaller-scale, making it suitable for decentralized applications.

High-temperature electrolysis uses a somewhat different concept. Ceramic membranes that conduct ions at very high temperatures separate superheated steam at 600 to 800 degrees Celsius into oxygen and hydrogen. Since most of the energy required for this process is already provided by heat, the electrical energy requirement is lower. When industrial waste heat is used, which costs little or nothing, this method can be very efficient. Measured in terms of the electrical input, its efficiency is higher than with other methods.

Price strategy

Ultimately, however, efficiency is only indirectly important; what matters most is the cost. The overall cost comprises the cost of the electrolyzer, including maintenance and replacement of worn-out membranes, the price of the electricity used for the process, and any subsequent costs for drying, cleaning and compression of the gas, as well as transport.

A 2018 study by Fraunhofer ISE and IPA estimated the investment costs for a PEM electrolyzer that produces one standard cubic meter of hydrogen in one hour at around $7,600. In the meantime, however, prices have fallen to between $4,900 and $6,000, says Tom Smolinka, head of the department for chemical energy storage at Fraunhofer ISE and one of the authors of the study. The alkaline electrolyzers, which at the time of the study cost $3,300 and $6,000, are now said to be considerably cheaper in China. At the time the study was conducted, there were essentially no market-ready applications for high-temperature electrolysis.

Smolinka estimates that the production of a membrane-electrode unit – the heart of a PEM electrolysis cell – accounts for 60% to 70% of the total cost, while pure material costs – including the expensive precious metals – account for only 30% to 40%. Furthermore, he adds that the power electronics used in large electrolyzers are currently not yet a mass product, but rather a customer-specific one-off item. Accordingly, prices are likely to fall dramatically once sales volumes increase. Up to now, most electrolyzers have been manufactured in work processes involving little automation or even entirely by hand, says Smolinka. “Highly automated production, especially for cell components, as already exists for PEM fuel cells, would not be a problem technically.” However, he adds, that the current low level of market demand is preventing manufacturers from making the necessary investments.

Investment costs

A number of market players are working to bring down investment costs. An example of this is the joint venture between ITM Power and Linde, which plans to open a semi-automated factory in Sheffield, U.K., this year to produce 1 GW of electrolysis capacity per year, primarily for multi-megawatt projects, such as the one in Cologne. Other well-known companies have also announced major projects and are expanding production. NEL, for instance, is currently gearing up for a 20 MW project in Denmark, and Hydrogenics is readying the launch of a smiliar-sized project in Canada. Alongside project size, stack performance is also improving. Currently, stacks are generally available with an electrical input power of 400 kW. Soon, several of the players want to increase this capacity to 1 MW. Scaling the size should reduce costs.

Enapter takes a different approach. The Italian-German company is resolute in its commitment to a small standardized product that can be produced in ever larger quantities and then installed side-by-side as needed. Founder and CEO Schmidt draws parallels to the computer world to illustrate the plausibility of the concept. Distributed personal computers have replaced mainframe computers to a large extent, because high production volumes made them cheaper to make than a small number of mainframe computers. Similarly, the Enapter product is expected to reduce costs compared to the large central electrolyzers, which are not manufactured industrially.

This discussion about whether the goal is achieved faster by scaling up to larger units in smaller quantities or by scaling up to larger quantities of smaller units is common in many industries. Skeptics say that the latter approach is not as promising for electrolyzers for reasons of physics. Unlike computers, the performance of electrolyzers would not increase many times over as they were scaled down in size. On the other hand, with AEM electrolysis, the possible elimination of precious metals could make distributed generation viable for the mass market.

At a current price of $9,800, the device supplies half a cubic meter of hydrogen per hour, or one kilogram of hydrogen every 24 hours. With a targeted service life of 30,000 hours, the unit currently achieves a price of $7.30/kg, which corresponds to $0.19/kWh (calorific value). These figures, however, do not include the price of the 54 kWh of electricity required to produce 1 kilogram of hydrogen with AEM electrolysis. If we assume, for example, that the input electricity costs $0.055/kWh, this adds another $3/kg, or $0.075/kWh of hydrogen, to the production cost.

As soon as automated production at the Pisa site starts up as planned in four years time, the electrolyzer will be so cheap that the target of $1.64 per kilogram minus electricity costs will be achieved, says Schmidt. At that point, the developers hope that it would not only be worthwhile to use the device for distributed generation, but also to assemble larger aggregates, as in the computer example. Installing 416 of the units would achieve an output of 1 MW.

Source of uncertainty

The service-life of the devices is included in all of the cost estimates, which, as with any new technology, cannot be easily proven. For example, it is impossible to verify whether an AEM electrolyzer will really last 30,000 hours and a PEM electrolyzer between 60,000 and 80,000 hours, as the manufacturers claim. However, Schmidt from Enapter and Tom Smolinka’s researchers agree that AEM and PEM cells scarcely age at all over time. Also, whether the electrolyzer runs under full load or only at half power makes little difference.

Ultimately, the membrane itself is not the only factor that determines service life. “The greatest influence on the service life is the water quality,” says Smolinka. Impurities accumulate in the fine pores of the membrane, which block them, or in the case of salts, form bridges.

Another factor that gums up electrolysis cells is the temperature. Excessive loads lead to higher temperatures in the entire system, and unevenly coated electrodes can create hot spots.

Areva H2Gen will address this challenge over the next three years. In a research project at Industriepark Höchst, the company is using a 1 MW PEM electrolyzer. In addition to hydrogen production, it will also provide primary control power in the future, which means that it will sometimes be operated at twice its capacity, while at other times at only a fraction of its 250 kW capacity. If the concept proves practicable, it will not only open up additional income for operators of electrolysis plants but could also help to stabilize the electrical grid.

According to cost calculations by project manager Lucas Busemeyer, Enapter’s cost objective can already be achieved today with Areva H2Gen’s centralized unit. With continuous utilization of the plant – 8,000 operating hours per year over a period of 20 years – a hydrogen price of $3.90/kg is achievable at an electricity price of $0.055/kWh. This estimate assumes that the PEM stack would be replaced once after 10 years.

Significant reductions

Since power costs are a decisive factor in total generation costs, the technology and its utilization cannot be separated. Anyone purchasing green electricity from the grid, whether through PPAs or as certified green electricity, has to consider connection fees, levies and surcharges on the electricity price, whatever the legal regulations may be. However, the electrolyzer can connect directly to an existing gas or hydrogen network, as is the case with Shell and Areva H2Gen, in Höchst.

Operators who generate hydrogen with smaller solar systems may be able to make use of the heat and thus increase economic efficiency, and may also use the fuel directly for heating or for refueling vehicles without the need to transport it. Such producers also save a portion of the levies and surcharges on the electricity price and reduce the burden on the grid.

In principle, however, investors who plan to use solar energy alone to operate the electrolyzer will have to accept a longer payback period, as the energy is only available for a low number of full-load hours.

Significant reductions in electricity consumption for electrolysis can be achieved with high-temperature devices that have the highest electrical efficiencies of 80% to 90%. One of the pioneers for this technology is Sunfire from Dresden. Instead of 55 kWh as in PEM electrolysis, only 41.4 kWh of electricity are needed to produce 1 kilogram of hydrogen. To do this, however, the electrolysis cell must be heated. It is therefore a good idea to install them where industrial waste heat is generated, such as in steel plants. If steel production is to be CO2-free, sector coupling is perfect, because the hydrogen produced can be consumed immediately. With the oxygen membrane Sunfire uses, not only can water be split to produce hydrogen, but any molecule containing oxygen, such as hydrocarbons or even carbon dioxide, can be separated, says Nils Aldag, COO of Sunfire. The resulting gas can easily be processed into synthetic crude oil, which is much easier to transport than bulky hydrogen.

The question of centralized or distributed electrolysis will probably not be an either/or but a both/and matter in the end. The task is enormous. The Shell Rheinland refinery in Cologne alone, which according to the company is the largest refinery in Germany, requires 180,000 metric tons of hydrogen a year. It is still produced mainly by steam reformation from natural gas, which produces a lot of climate-damaging CO2. Since mid-2019, the company has been building a 10 MW electrolysis plant at the Wesseling plant. According to Shell, the world’s largest plant utilizing proton exchange membrane technology in the world will be installed there. And yet around 140 such plants would be necessary for just this one company to switch to green hydrogen.

 

Schedule a call with us to see what green hydrogen would look like for you: SCHEDULE A CALL WITH US

 

This article originally appeared on pv-magazine-usa.com, and has been republished with permission by pv magazine (www.pv-magazine.com and www.pv-magazine-usa.com)

Read More

Chinese coal miner starts work on world’s biggest solar-powered hydrogen facility

May 22, 2020 9:30:00 AM / by Vincent Shaw, pv magazine posted in Policy, United States, Energy Storage, Markets, Hydrogen, Green Hydrogen, China, Sustainability, Industrial PV, Commercial PV, Hydrogen Production, Markets & Policy

0 Comments

The project includes the modification of two transport service stations to supply hydrogen.

Image: Griffith University

 

 

Chinese coal miner Baofeng Energy has announced the start of construction of what it claims will be the world’s largest solar-powered hydrogen plant, in the Ningxia Hui autonomous region of northwest China.

The RMB1.4 billion ($199 million) electrolysis project is intended to produce 160 million cubic meters of hydrogen per year plus 80 million cubic meters of oxygen. Baofeng said the use of solar electricity to power the facility would save 254,000 tons of coal consumption annually, leading to a 445,000-ton reduction in carbon emissions.

The project will feature two 10,000m3/hr electrolyzers powered by two 100 MW solar plants plus a 1,000kg/day hydrogenation station and two petrol stations will be converted to also supply natural gas and hydrogen for transport purposes. The solar panels will be installed over wolfberry and alfalfa crops which will generate extra revenue, according to Baofeng.

Work on the project started this month and is slated for completion this year, with hydrogen production to start next year.

Baofeng is also working on a coking co-generation plant to produce three million tons of coal-based coke per year, plus 1.2 billion cubic meters of hydrogen.

 

Interested in learning more about the benefits of green hydrogen? Schedule a call with us here: 

 

SCHEDULE A CALL WITH US

 

 

This article originally appeared on pv-magazine-usa.com, and has been republished with permission by pv magazine (www.pv-magazine.com and www.pv-magazine-usa.com).

 

Read More

The solar highway to Australia’s renewable hydrogen economy

May 15, 2020 9:15:00 AM / by Blake Matich, pv magazine posted in Policy, Utilities, Utility-Scale PV, Decarbonize, Decarbonization, Hydrogen, Green Hydrogen, utility scale storage, Australia, Technology, Electrification, Electrolysis, Utility Scale Markets, Research & Development, Hydrogen Production, Solar assets

0 Comments

 

 

 

From pv magazine Australia

The new Renewable Hydrogen Market Report, produced by ANT Energy Solutions and backed by the Australian Renewable Energy Agency (ARENA), features a number of key findings in the race to develop an Australian renewable hydrogen economy. The main conclusion is that on-site solar is the only way to go.

The report’s authors ran two models for renewable hydrogen produced by electrolysis, The first is a high OPEX, low CAPEX model (grid-connected, high capacity-factor), while the second is a high CAPEX, low OPEX model (behind-the-meter, low capacity-factor). The analysis indicated “that despite the much lower utilization rate, behind-the-meter solar renewable hydrogen generation can produce hydrogen at approximately half the cost per kilogram to a grid-connected system” with an electricity cost of AU$0.11 (US$0.07) per kilowatt-hour.

What this means is that the most cost-effective way of producing renewable hydrogen is by powering an electrolyzer with on-site solar. Indeed, the report suggests that hydrogen can be produced via on-site solar at a cost of $3.19 per kilogram of hydrogen versus $6.08 if produced from the grid.

Of course, considering that the costs of solar continue to decrease as efficiency rises, the cost of behind-the-meter solar hydrogen will only continue to drop, possibly below the AU$2 mark.

“Based on this alone, Australia has great potential to drive forward an increase in renewable energy and renewable hydrogen production,” the authors of the report said. “The impetus from ARENA is continuing to drive the cost of solar down with a continued reduction in the cost of large scale solar expected over the next five to 10 years.”

The call then, is for states and the federal government to support large-scale solar electrolysis as the cleanest and most obvious way to drive down the capital costs of a hydrogen economy.

Economic ecosystem

On-site solar is the most cost-effective way to build a domestic and export hydrogen industry, but it also might be the only way. “Commercialization of hydrogen as an end product requires the development of an entire economic ecosystem,” according to the report. “As with all ecosystems, they cannot function until there is critical mass in the system, so the faster scale can be developed, the more chance there is for the ecosystem to form and advantage to be generated.”

If Australia doesn’t act on its competitive advantage sooner rather than later, other countries might develop their hydrogen economies and start exporting first. The report points to Australia’s solar panel industry as an example of “where Australia failed to develop this ecosystem and competitive advantage has been lost to China and the United States, where scale of development has occurred in technology research, equipment design and fabrication.”

Businesses have already noticed the obvious competitive advantage. Toyota is installing a solar-electrolyzer at its site in Melbourne. Indeed, the company recently celebrated Earth Day by unveiling the first completed stage of its green hydrogen hub, with the help of ARENA funding.

ARENA CEO Darren Miller stands outside Toyota’s Altona Centre of Excellence. Image: ARENA

Export potential

The CSIRO National Hydrogen Roadmap expects demand for hydrogen imports by Asian nations to reach 3.8 million tons by 2030. At the same time, ACIL Allen Opportunities for Hydrogen Exports model suggests that 10% to 20% of Japanese and South Korean hydrogen demand could be met by Australian exports. In other words, hydrogen means big business.

However, before we can talk about how much hydrogen countries such as Japan and Korea might want from us – let alone how we’ll manage to get the hydrogen up there – we must first decide how we’re going to produce said hydrogen.

In November, the COAG Energy Council adopted the National Hydrogen Strategy, our pathway to a domestic and export hydrogen economy. The strategy, however, remains “technology-neutral,” which is to say it is not solely to produce green hydrogen, but to keep Australia’s options open to fossil-fuels as well — playing the field, as it were. Although, as the ANT report shows, fossil-fuel-produced hydrogen is rather senseless compared to renewably produced hydrogen. Energy Minister Angus Taylor may think he is playing the field, but these are Flanders Fields, not Elysian ones, which is to say that Taylor is pursuing a senseless policy for the comforting sake of outdated norms.

Future forecasts

The ACIL Allen Opportunities for Hydrogen Exports model projected a mid-case forecast of 500,000 tons of hydrogen per annum by 2030. To put that in perspective, if we continue only with what we have already and what we have under construction, by 2025 we will have less than 3,000 tons per annum by 2025.

This is to say, if we don’t scale up renewable hydrogen production capacity by 160 times by 2025, we’ll be just 497,000 tons short of the ACIL Allen mid-case.

If we don’t make a change, nothing will change. Image: ANT Energy Solutions

For an increase of that scale, Australia needs to put multiple industry-scale (100 MW-plus) renewable hydrogen projects in place over the next few years or the cost of production will remain too high and the hydrogen opportunity will be tentative, if not lost.

The renewable hydrogen opportunity cannot afford to be lost, as the scope of its Promethean potential is unfathomable, but there is much that can be understood already. If renewable hydrogen breaks the $2 per kilogram barrier, for example, it could immediately replace the domestic market for natural gas feedstock and provide a low-cast pathway to a green ammonia export industry, let alone Australia’s grander export ambitions. But, of course, “industry-scale renewable hydrogen development will require government and industry support to enable the adoption and the continued reduction in the cost per kilogram of renewable hydrogen … At levels below A$1.95 between 2025 and 2030, Australia will be able to transition a domestic market and be competitive in the forecast export markets.”

Currently, it is estimated that only 2% to 4% of the world’s hydrogen is produced via electrolysis.

 

Interested in learning more about green hydrogen? Schedule a call with us here:

 

SCHEDULE A CALL WITH US

 

This article originally appeared on pv-magazine-usa.com, and has been republished with permission by pv magazine (www.pv-magazine.com and www.pv-magazine-usa.com).

 

Read More

Lists by Topic

see all

Posts by Topic

See all

Recent Posts