Breiter Planet Hydrogen Blog

‘Low-cost renewable hydrogen may already be in reach’

Jun 30, 2021 9:30:00 AM / by Max Hall, pv magazine posted in Solar Finance, California, Policy, United States, Markets, Utility-Scale PV, Finance, India, Germany, Hydrogen, Spain, Green Hydrogen, China, World, utility scale storage, Australia, Sustainability, Industrial PV, Commercial PV, Japan, Utility Scale Markets, Hydrogen Production, Canada, Green Finance, United Arab Emirates, Markets & Policy, united kingdom, Hydrogen Economy, Saudi Arabia

0 Comments

Can the Middle East open the door to affordable clean hydrogen?

Image: Ghadir Shaar

 

A report by the International Renewable Energy Agency (IRENA) has suggested affordable green hydrogen could already be obtainable, based on the record-breaking low prices for solar negotiated in the Middle East.

Solar electricity tariffs of $0.0157, $0.0135 and $0.0104 per kilowatt-hour agreed in Qatar, the United Arab Emirates and Saudi Arabia, respectively, in the last 18 months, would enable renewables-powered hydrogen to be produced for as little as $1.62 per kilogram, according to IRENA's Renewable Power Generation Costs in 2020 report.

The Abu Dhabi-based international body made its calculations – all of which are in U.S. dollars – based on the $0.0104 solar power tariff agreed in Saudi Arabia in April, with green hydrogen generation being modeled at the Dumat al Jandal site in the kingdom which boasts strong solar and wind power resources. With the site already hosting a wind farm, IRENA modeled a hydrogen plant which would also harness solar and be connected to the grid. The report suggested lack of a grid connection would raise the renewable hydrogen cost to $1.74/kg, which still compares favorably to the current $1.45-2.40/kg price of hydrogen production powered by natural gas and equipped with carbon capture and storage (CCS) tech.

 

Further extrapolating the costs, the study estimated a fall in hydrogen electrolyzer costs, from $750 per kilowatt of capacity to $350, would enable renewable hydrogen production for $1.16/kg. Raising electrolyzer efficiency to 72.5% and extending stack lifetime from 15 to 17.5 on top of that, IRENA said, could take green hydrogen below the prized $1/kg point.

With this year's renewables price report explaining how the three tariffs secured in the Middle East since January 2020 can be regarded as viable without any hidden caveats or subsidy, the authors of the study stated: “low-cost renewable hydrogen may already be in reach.”

The document fleshed out how up to 800 GW of coal-fired power generation capacity worldwide could already be replaced by newly-built renewable energy facilities as solar and wind prices have dipped under the cost of running legacy fossil fuel plants in many markets. That estimate included a $5/MWh cost of integrating renewables into the electric grid and IRENA said, with around 40% of that overpriced capacity – and 37% of actual generation – based in Bulgaria, Germany, India and the United States, decommissioning could save around $32 billion per year in energy costs. Making the switch would also eliminate three gigatons of carbon emissions – 20% of what IRENA estimates is needed to keep global heating to a maximum 1.5 degrees Celsius this century.

The data

The latest edition of the report is based on data from around 20,000 renewables generation facilities worldwide which account for 1.9 TW of generation capacity, and on clean energy auction prices and power purchase agreements which add up to 582 GW of capacity. All the figures in the study exclude any form of subsidy and the authors point out, adding CCS to the world's overpriced coal plants would merely drive up their costs further.

IRENA has estimated all of Bulgaria and Germany‘s coal plants will this year cost electricity bill payers more than new renewables facilities would, based on a European carbon emissions price of €50 per ton. Even without an emissions trading scheme in the U.S. and India, the picture is similar, with 77-91% of American coal plants and 87-91% of Indian facilities also overpriced.

That conclusion is based on an estimated levelized cost of energy (LCOE) for solar power in India this year of $0.033/kWh, down from $0.038 last year; and of $0.031 in the States this year, although the report's authors note the solar module price has picked up between 1% and 9% in the first quarter of this year, thanks to shortages of raw materials such as polysilicon.

 

With the global LCOE of solar having fallen 7% from 2019 to last year, from $0.061 to $0.057/kWh, India led the world for low-price PV last year, with an average LCOE of $0.038/kWh for utility scale generation, ahead of China, with $0.044, and Spain, with $0.046. The authors noted Turkey also rapidly reduced average solar tariffs, to $0.052 last year, and Australia posted an average $0.057.

That translated into average solar project development costs of $596 per kilowatt installed in India, the world's lowest figure and down 8% from Indian costs in 2019. Solar projects in Vietnam came in to $949/kW and were only $796/kW in Spain last year, the report added. At the other end of the scale, projects in Russia cost $1,889/kW and, in Japan, $1,832, with those two countries exceptional among the 19 markets studied as the cost differences between areas from Canada (at $1,275/kW) down to India, were more evenly distributed.

Auction results posted last year, for projects expected to be commissioned this year and next, prompted IRENA to estimate the global average solar power price will fall to $0.039/kWh this year before rising slightly to $0.04 next year, which would still be a 30% fall on this year's figure and 27% less than the LCOE to be expected from new-build coal plants. With the predictions based on 18.8 GW of renewables capacity expected this year and 26.7 GW due in 2022, the study estimated 74% of the clean energy facilities expected this year and next will be cheaper than new fossil fuel generation sites.

Cheaper

Renewables are already making real headway, of course, with IRENA calculating 45.5 GW of the solar added last year was among the 62% of the 162 GW of clean energy facilities which were installed more cheaply than new-build coal plants.

Digging into the solar statistics, the report said mainstream solar panel costs in December ranged from $0.19 to $0.40 per Watt, for an average price of $0.27, with thin-film products averaging $0.28/W.

Operations and maintenance costs came in at an average of $17.80/kW last year in OECD countries and $9 elsewhere, in a year which also saw non-panel, balance-of-system equipment costs account for 65% of total project expense.

For residential solar arrays, average system prices in the 19 markets studied by IRENA ranged from $658/kW in India to $4,236 in California, for LCOE figures from $0.055/kWh in India to $0.236 in the U.K. For commercial systems, India was again the cheapest place to invest last year, at an average $651/kW, but a business in California would have to find $2,974/kW. Those system costs translated into LCOE numbers ranging between $0.055 in India and $0.19 in Massachusetts.

 

This article originally appeared on pv-magazine-usa.com, and has been republished with permission by pv magazine (www.pv-magazine.com and www.pv-magazine-usa.com).

Read More

Adani chief talks solar and hydrogen storage opportunity

Jun 26, 2020 9:15:00 AM / by Uma Gupta, pv magazine posted in Policy, Markets, Utility-Scale PV, Modules, Finance, India, Hydrogen, Green Hydrogen, Highlights, World, utility scale storage, Employment, Utility Scale Markets, Covid-19, Green Finance, Upstream Manufacturing, Markets & Policy

0 Comments

Early this year Adani announced his company’s goal to become the world’s largest solar power company by 2025 and the largest renewable power company by 2030.

Image: Life tech/Flickr

 

Covid-19 presents an opportunity to pause, rethink, and design a new and faster transition to a cleaner energy future, said Adani Group chairman Gautam Adani recently in his LinkedIn post.

“The [clean energy] transition could lead to investment opportunities of US$ 19 trillion in solar, wind, battery storage, green Hydrogen, carbon management and energy efficiency by 2050, making it one of the largest global industries”—Adani quoted a recent forecast by the International Renewable Energy Agency (IRENA).

“Employment in the clean energy sector, currently at 12 million in 2020, could quadruple by 2050, while jobs in energy efficiency and system flexibility could grow by another 40 million.”

Adani believes India, in particular, is well-positioned to benefit from the transition as it is naturally endowed with very high levels of solar resources, and the long coastline makes an attractive proposition for wind power.

Falling solar prices in favour

With technology driving prices down, renewables would supplement fossil fuels in the short term and emerge as the favoured option in the long term.

Adani quoted an MIT research paper to share that the price of solar modules has dropped 99% over the past 40 years. Going by the trend, he expects prices to drop by an additional 99% over the next 40 years – probably reducing the marginal cost of electricity to zero.

“Such a reduction, in turn, will mean the coexistence of two business models – one based on fossil fuels and the other driven by renewables – both supplementing each other in the near future but the pendulum swinging decidedly in favour of renewables in the long-term,” he wrote.

Adani said many of the [power] system operators in Europe, faced with falling [electricity] demand, are learning to manage grids at a remarkably high level of renewables in the energy mix, often up to 70%.

“While the generation balance may swing back as [electricity] demand increases, the crisis has provided insights to operators on keeping the grid stable with high levels of renewable penetration. Post Covid-19, this may be the new norm,” he said.

Hydrogen storage, a potential game changer

With increasing investor confidence in solar and wind, their integration with various storage technologies will further accelerate the energy transition, said Adani, highlighting hydrogen as the predominant storage technology on the horizon.

“With the prospect of the future marginal cost of renewable energy dropping precipitously, green Hydrogen produced by the splitting water could be the game-changer.

“This Hydrogen could use much of the existing gas pipeline network for distribution, be blended with natural gas and be a green feedstock for the chemical industry. Add to this the fact that the energy density of a kilogram of Hydrogen is almost three times that of gasoline, and you have a momentum that would be near impossible to stop as Hydrogen fuel cell vehicle prices come down,” he said.

 

Inteerested in how to make green hydrogen work for your property or business? Schedule a call with us here to learn more:

SCHEDULE A CALL WITH US

 

 

This article originally appeared on pv-magazine-india.com, and has been republished with permission by pv magazine (www.pv-magazine.com and www.pv-magazine-india.com.)

Read More

New hydrogen fund: Can we get bang from 300 million bucks?

Jun 9, 2020 9:30:00 AM / by Natalie Filatoff, pv magazine posted in Policy, Markets, Finance, Decarbonize, Decarbonization, Hydrogen, Green Hydrogen, Highlights, Australia, Technology, Electrification, Sustainability, Electrolysis, Clean Energy, Markets & Policy, Technology & R&D

0 Comments

Renewable energy makes sense of hydrogen.

Image: Australian Energy Market Operator (AEMO)

 

This morning Federal Government Ministers Mathias Cormann and Angus Taylor announced a $300 million Advancing Hydrogen Fund in terms of a panacea:

“From cheaper energy bills and job creation in regional Australia, to playing a role in reducing global emissions both at home and in countries that buy Australian produced hydrogen, the industry’s potential cannot be ignored,” said Energy and Emissions Reduction Minister Taylor in the joint announcement.

The fund is designed to mesh with priorities under the national Hydrogen Strategy and as such will back areas that advance hydrogen production, developing export and domestic supply chains, establishing hydrogen hubs and building domestic demand for hydrogen.

Just a month ago, BloombergNEF released a report, Hydrogen Economy Outlook, which concluded that only a widespread global commitment to net zero emissions could generate the kind of investment — it calculated the need for US$150 billion in cumulative subsidies to 2030 — required to bring down the cost of producing hydrogen and make it competitive with other fuels.

Hydrogen is not a free kick

“Once you set a net zero target, and are serious about putting policies and measures in place to achieve that, then hydrogen becomes a necessary option,” Kobad Bavhnagri, Global Head of Industrial Decarbonisation at BNEF and lead author of the report, told pv magazine at the end of March.

“If you don’t have that clarity and that purpose,” Bhavnagri continued, “then actually there’s no need to do hydrogen and it won’t stand up.” A higher cost, less convenient energy source than fossil fuels such as coal, gas and oil, hydrogen only starts to make sense when the demand is created for a zero-emissions alternative.

Bhavnagri explained that development of hydrogen is a global task. It requires mass participation to achieve the economies of scale that will make hydrogen viable.

Based on fuel prices in March, the Hydrogen Economy Outlook estimated, for example, that if the electrolysers used to produce hydrogen from water (one method of hydrogen production that lends itself to using renewable energy to power the process of atom splitting) could be driven dramatically down in cost by demand and manufacturing efficiencies, renewable hydrogen could be produced for US$0.8 to US$1.6/kg by 2050. This was then equivalent to gas priced at US$6-12/MMBtu, making it competitive with natural gas.

Australia’s Federal Government has set the open-ended goal — dubbed ‘H2 under 2’ — of producing hydrogen for AU$2 a kilogram as part of its as yet unreleased but much anticipated Technology Investment Roadmap.

Its $300 million Advancing Hydrogen Fund is to be administered by the Clean Energy Finance Corporation (CEFC), which this morning welcomed the announcement of its amended mandate to make the $300 million available from its existing funds. 

“We are confident we can use our capital to help build investor confidence in the emerging hydrogen sector,” said CEFC CEO, Ian Learmonth.

It’s not easy staying green

This morning’s CEFC statement also emphasised that, “In line with the CEFC Act, projects seeking CEFC finance through the Advancing Hydrogen Fund are required to be commercial, draw on renewable energy, energy efficiency and/or low emissions technologies and contribute to emissions reduction.”

The CEFC says that from the allocated Advancing Hydrogen Fund it anticipates providing either debt or equity finance to eligible larger-scale commercial and industrial projects likely to require $10 million or more in CEFC capital, alongside finance raised from other sources.

CEFC identifies an early priority for funding to coincide with the Australian Renewable Energy Agency (ARENA) $70 million Renewable Hydrogen Deployment Fund. 

This ARENA funding round opened on 15 April, and expressions of interest are currently set to close on 26 May. Outcomes are expected to be announced on 30 November this year.

“We see green hydrogen as offering the most credible pathway to decarbonisation for high emitting sectors and those which lack scaleable electrification options,” said CEFC’s Learmonth. CEFC identifies some of these sectors as manufacturing, heavy transport such as trucks and shipping, mining, processing of metals and production of chemicals.

Exports going nowhere: use it on shore

One clear point of departure between BNEF’s Hydrogen Economy Outlook and the stated ambitions of the Government Advancing Hydrogen Fund is in relation to hydrogen as an export industry for Australia.

Cormann describes the Fund as a “catalyst for the future growth of Australia’s hydrogen industry,” which has the potential to become “a major new export industry”. Taylor adds the commitment made in the National Hydrogen Strategy, launched in November last year, “to build Australia’s hydrogen industry into a global export industry by 2030”.

Bhavnagri, on the other hand, found in his BNEF report that, “the economics of exporting hydrogen by ship are very poor”.

He told pv magazine, “This narrative about Australia being able to export hydrogen is a bit misplaced … Hydrogen is not like natural gas; it’s far less dense and has a liquefaction temperature much lower than natural gas, so it’s just much harder to put on a ship in a liquefied state — it’s really expensive to do.”

He concluded that “Australia can be a hydrogen superpower by using it onshore and exporting value-added products.”

Both the Australian Government and BNEF champion the establishment of hydrogen hubs, with BNEF explaining the efficiencies that such developments could offer: hubs might include clusters of wind-and-solar-powered electrolysers, and large storage facilities to smooth and buffer hydrogen supply, served by networks of dedicated pipelines feeding hydrogen to co-located industrial customers. 

Renewable resource can make Australia’s hydrogen the cheapest

Writing in BNEF’s Hydrogen Economy Outlook, Bhavnagri notes: “Our analysis suggests that a delivered cost of green hydrogen of around US$2/kg in 2030 and US$1/kg in 2050” is achievable in China, India and Western Europe. Countries with the best renewable and hydrogen storage resources, such as Australia, could achieve 20-25% reductions on these costs.

But BNEF cautions that even at US$1/kg the use of hydrogen in place of fossil fuels is still likely to require a carbon price or other policy measures to make it the most attractive option: “This is because hydrogen must be manufactured, whereas natural gas, coal and oil need only to be extracted, so it is likely to always be a more expensive form of energy.”

Ultimately Bhavnagri is optimistic about the potential for hydrogen to help decarbonise the planet, and to open new opportunities for green manufacturing in Australia that could significantly boost employment opportunities.

Signs of hydrogen life

The Hydrogen Economy Outlook said investors keen to be involved in hydrogen projects should look out for evidence of seven key events that signal opportunity for green hydrogen to scale as needed to provide a viable alternative to fossil fuels, and act as an accelerator to decarbonisation . In order of importance, the first three indications are:

  1. Legislation of net-zero climate targets
  2. Harmonisation of international standards governing hydrogen use
  3. Introduction of targets with investment mechanisms

We now have an investment mechanism, administered by a trusted body which has previously facilitated almost $28 billion worth of clean-energy projects in Australia since its inception in mid-2012, but this investment seems still untethered from Government political will and policy needed to reach net zero emissions within a timeframe that will help global citizens avoid the next looming threat to our lives. Prosperity assumes a healthy planet.

 

Schedule a call with us to see how Green Hydrogen can help take you further.

SCHEDULE A CALL WITH US

 

This article originally appeared on pv-magazine-usa.com, and has been republished with permission by pv magazine (www.pv-magazine.com and www.pv-magazine-usa.com).

Read More

QUT to drive green hydrogen export through LNG-focused research center

Apr 28, 2020 9:15:00 AM / by Marija Maisch, pv magazine posted in Policy, Politics, Energy Storage, Markets, Finance, Decarbonize, Decarbonization, Hydrogen, Green Hydrogen, Australia, Technology, Electrolysis, Research

0 Comments

Hydrogen from electrolysis is often described as the missing link in the energy transition.

Image: Roy Luck/Flickr

 

 

As the momentum is building behind hydrogen in Australia and abroad, the Queensland University of Technology (QUT) is leading the way in research and development with a range of initiatives on the ground. After it played a key role in Australia’s first green hydrogen shipment to Japan, QUT is now readying to drive the green hydrogen export industry through the Future Energy Exports Cooperative Research Centre (FEnEx CRC).

Officially established on Friday, the FEnEx CRC is a national collaboration of 28 industry, government, and research partners. As announced on Friday, the center won the backing of the Federal Government to the tune of $40 million, which builds upon a further $122 million in support from industry, state governments, and research organizations.

The CRC’s core mission is to ensure Australia’s LNG industry remains competitive, reduces its environmental footprint, and helps to grow hydrogen exports for new emerging markets. Its foundation project will be establishing the LNG Futures Facility, a 10 tonne-per-day research and teaching plant to be based at Kwinana, in Western Australia.

“FEnEx CRC will undertake cutting-edge, industry-led research, education and training to help sustain Australia’s position as a leading LNG exporter, and enable it to become the leading global exporter of clean hydrogen,” Professor Eric May, UWA’s Chevron Chair in Gas Process Engineering and FEnEx CRC Acting CEO, said. “Our established LNG sector is a key advantage in the race to grow a hydrogen export industry because of the similar workforce skills, engineering standards, shipping routes, and business relationships.”

But while Professor May has spoken about “clean” hydrogen, there has been no indication that this hydrogen will be truly clean and produced by electrolysis using solar or wind electricity. He said the CRC would support Australia’s National Hydrogen Strategy, which remains “technology-neutral”, with both hydrogen produced using renewable energy and the one via fossil fuels with “substantial” carbon capture and storage (CCS) in the game.

Throughout the consultation process last year, Chief Scientist Alan Finkel continued to push Australia toward hydrogen produced by solar and wind, but also remained attached to the fossil fuel-CSS idea. The stance was reflected in the Strategy itself.

Green hydrogen push

Nonetheless, Professor Ian Mackinnon, from QUT’s Institute for Future Environments, said FEnEx would build on the extensive work QUT had already done in the green hydrogen sphere, including partnering with Japanese company JXTG to produce and export green hydrogen to Japan and leading a $7.5 million research project to establish a renewable energy pilot plant producing green hydrogen at the Redlands Research Facility. This latter project is supported by four universities, Japanese and Australian corporations, the Queensland Government and the Commonwealth agency, ARENA.

“The FEnEx CRC is an excellent opportunity to translate the skills from one industry, and to build another export industry in the world of green hydrogen storage and utilization,” Professor Mackinnon said. As part of the FEnEx CRC, QUT’s Professor Mackinnon and Professor Anthony O’Mullane will be working on research projects involving the hydrogen export and value chains.

“This complements QUT’s activities in developing a renewable energy facility at Redlands to power the production of hydrogen using various electrolyser technologies,” Professor O’Mullane said. “This program will enable the next generation of scientists and engineers with the key skills for the transition to renewable power generation, storage, transport and utilisation. This CRC will accelerate efforts in the development of cheaper, more stable catalysts for rapid deployment in commercial scale electrolysers to produce green hydrogen.”

Another QUT professor, Rachel Parker will lead the Market Development Program in the FEnEx CRC, which will aim to identify the strongest global market opportunities for the development of Australia’s future energy exports. “The market development program will identify the business and social drivers and barriers to the adoption of technologies developed through the other CRC programs and will maximise the market and social benefits from the rapidly changing technological and industrial context of energy,” she said.

Read More

UNSW hydrogen storage technology to debut at community solar farm

Apr 7, 2020 9:15:00 AM / by Marija Maisch, pv magazine posted in Community, Energy Storage, Finance, Installations, Community Solar, Hydrogen, Green Hydrogen, Highlights, utility scale storage, Australia, Grids, Integration, New South Wales

0 Comments

Providence Asset Group's Mr Llewellyn Owens, NSW Energy Minister Matt Kean, UNSW's Professor Kondo-Francois Aguey-Zinsou.

Image: UNSW

 

More than $15 million in funding from the state government’s Regional Community Energy Fund was announced on Tuesday to help regional communities in New South Wales (NSW) take control of their energy bills and benefit from the economic opportunities presented by the energy transition. The awarded projects will unlock nearly 17.2 MW in electricity generation and up to 17.9 MW/39.3 MWh of energy storage, leveraging approximately $36 million in private investment.

Six projects will install solar, four of which will collocate battery storage on site, and one will deliver a shared community battery scheme.  The list of approved projects includes 5 MW Bayron Bay Solar Farm alongside a 5 MW / 10MWh DC-coupled battery; 500 kW Gloucester Community Solar Farm; the Goulburn Community Dispatchable Solar Farm involving 1.2 MW of solar PV and 400 kW / 800 kWh of battery storage; 1 MW Haystack Solar Garden; Orange Community Renewable Energy Park with a 5 MW solar farm and up to 5 MW / 5 MWh of battery storage; and a 1 MW / 2MWh battery, which will be installed under Enova Community’s Shared Community Battery Scheme for regional NSW.

A project that stands out in the group for its combination of on-site renewable energy technologies is the Manilla Community Solar. The development will feature 4.5 MW of solar PV, 4.5 MW / 4.5MWh of battery storage and a 2 MW /17 MWh hydrogen energy storage system. It will be backed by a $3.5 million grant that has been awarded to the Manilla Solar Project, a partnership between Manilla Community Renewable Energy and green investment outfit Providence Asset Group.

Plans for the Manilla solar farm were announced in December as one of the first of up to 30 community solar initiatives to be rolled out across regional Australia. On Tuesday, it was confirmed that the development will feature an advanced hybrid battery storage system in addition to the solar and battery storage components. According to UNSW, solid-state hydrogen technology will be installed in 20-foot containers with an energy density of 17 MWh and will be a first of this kind in the world in terms of scale.

New generation of batteries

The technology was first unveiled last March when a team of researchers at UNSW headed by Professor Kondo-Francois Aguey-Zinsou said they had developed a unique system that allowed for cheap storage and transportation of hydrogen and could provide a new alternative for energy storage within two years.

Their research, conducted in partnership with H2Store, had been underpinned with $3.5 million in backing from Providence Asset Group. The funding was intended to help the team deliver phase one of a four-stage project that includes the creation of prototypes of their hydrogen energy storage solution for residential and commercial use, demonstration units, and testing and optimization that will enable full commercialization of the product.

Speaking about the first phase of the project, Professor Kondo-Francois Aguey-Zinsou said that he believed his invention would offer significant advantages over current power storage solutions for home solar systems, such as the Tesla Powerwall battery.

“We will be able to take energy generated through solar panels and store it as hydrogen in a very dense form, so one major advantage of our hydrogen batteries is that they take up less space and are safer than the lithium-ion batteries used in many homes today,” he said, adding that the system can actually store about seven times more energy than other that are currently available. Other advantages include a lifespan of about 30 years compared with under 10 for other systems and no fire risk.

On Tuesday, Professor Aguey-Zinsou said: “I am very excited to see the technology we developed in the lab here at UNSW scaled up and used in real-world applications. It will prove the feasibility of hydrogen storage at scale and position Australia to become a major player in transitioning to renewable energy.”

Construction will commence on the Manilla Solar Project in the second half of 2020 and is expected to be operational early 2021. The storage component will be installed during 2021.

 

Interested in how hydrogen storage can be incorporated into your solar facility? Schedule a call with us:

 

SCHEDULE A CALL WITH US

 

This article originally appeared on pv-magazine-australia.com, and has been republished with permission by pv magazine (www.pv-magazine.com and www.pv-magazine-australia.com.)

Read More

Gladstone to run on gas-green hydrogen blend as gigawatt-scale plans take shape

Mar 5, 2020 9:30:00 AM / by Marija Maisch, pv magazine posted in Markets, Finance, Decarbonize, Decarbonization, Hydrogen, Green Hydrogen, Australia, Electrification, Queensland, Electrolysis, Employment

0 Comments

Hydrogen from electrolysis is often described as the missing link in the energy transition.

Image: ARENA

 

 

Gladstone set to become the nation’s green hydrogen hotspot with two new projects seeking to tap the opportunities in the domestic supply of zero-emissions gas and in the emerging export market. Located in central Queensland, Gladstone is set to become the first entire city in the nation to be on a blend of natural gas and hydrogen.

An Australian first $4.2 million gas injection facility will be built in Gladstone to deliver renewable hydrogen into the city’s gas network, thanks to the first grant from the Queensland Government’s $15 million Hydrogen Industry Development Fund. “Using green hydrogen, Australian Gas Networks (AGN) will trial the blended hydrogen gas with a view to converting Gladstone’s network to hydrogen in the future,” Queensland Premier Annastacia Palaszczuk said.

AGN, part of the Australian Gas Infrastructure Group (AGIG), has been offered more than $1.7 million through the fund to build a blending facility to deliver 10% renewable hydrogen into the gas network. Under its $19 million hydrogen strategy, Queensland is looking to assist companies with the purchase of capital equipment as well as industry players looking to carry out feasibility studies.

“This project will be the first in Australia to blend renewable hydrogen into a gas network with residential, commercial and industrial customers,” Minister for State Development Cameron Dick said speaking from the Gladstone Hydrogen Forum on Thursday.

Elsewhere in Australia, Canadian gas giant ATCO started blending renewable hydrogen into the on-site natural gas network at its Clean Energy Innovation Hub in Jandakot, WA. The blend will be used throughout the Jandakot depot as the first step in exploring the potential of hydrogen for home use in gas appliances.

In another initiative for greening the gas network, energy infrastructure company Jemena is looking to generate hydrogen from renewables and inject it into the existing gas network so that homes and businesses in Sydney could begin using the fuel within five years. The $15 million Western Sydney Green Gas Project aims to demonstrate the co-mingling, storage and distribution of hydrogen and natural gas in the existing network which, as Jemena puts it, has the capacity to store the equivalent of 8 million Powerwall batteries.

“This project supports Gladstone’s vision to be a key hub for Queensland’s domestic and hydrogen export industry, just as it is for natural gas today,” AGN’s CEO Ben Wilson said. AGN had formed a partnership with Central Queensland University (CQU) providing access to the blending facility for CQU staff and students to build skills in hydrogen technologies.

Gigawatt plans

Along with the AGN project, Gladstone has also been selected as the location for the Hydrogen Utility’s (H2U) latest project, a proposed $1.61 billion industrial complex for the large-scale production of green hydrogen and ammonia. The H2-HubTM Gladstone facility will be built in stages to integrate up to 3 GW in electrolysis plant, and up to 5,000 tonnes per day ammonia production capacity.

“The integration of mature technologies – such as electrolysis and ammonia synthesis – at industrial scale, powered by 100 per cent renewable power supply, meets the emerging demand for decarbonised products in the energy, chemicals and mobility markets of North Asia,” Attilio Pigneri CEO and Founder of H2U said. He sees Queensland as well-positioned to capitalize on the opportunities from this new industry, in part due to its strong existing trading relationships with Japan.

According to Attilio, Gladstone was an obvious choice for locating industrial-scale green hydrogen and ammonia facilities due to its existing skill base, industrial port eco-system, and strategic location in the Queensland grid. Through the government-run land use planning and property development agency, Economic Development Queensland (EDQ), H2U has purchased a 171-hectare site at Yarwun in the Gladstone State Development Area, which is in close proximity to the export precinct at Fisherman’s Landing.

“The progressive and well-structured planning framework applicable to State Development Areas such as Yarwun, was also a key factor in our selection of the project site,” Pigneri said. “With the land in Gladstone secured under contract the project will now move into master planning and detailed feasibility, targeting approvals by 2023 and first operation in 2025.”

The project could potentially translate into a major bonanza for the city, creating over 100 operational jobs and driving new exports for green hydrogen and ammonia. Ultimately, it could turn Gladstone into the hydrogen export powerhouse on the back of Queensland’s solar, wind and biomass resources, existing gas pipeline infrastructure and developed export infrastructure.

A big step was made last year when Queensland celebrated Australia’s first-ever delivery of green hydrogen to Japan. The fuel was exported by JXTG, Japan’s largest petroleum conglomerate, with hydrogen produced at QUT’s solar cell facility at the Queensland government’s Redlands Research Facility.

Previously, the Queensland government committed $750,000 for a feasibility study into producing hydrogen using solar energy from central Queensland and exporting it to Japan via Gladstone. In a separate initiative, the Australian Renewable Energy Agency (ARENA) announced it was providing $2.9 million in funding to two studies in Queensland looking at the potential to use solar and wind-powered hydrogen produced via electrolysis to increase ammonia production at facilities which currently rely on gas as feedstock.

 

This article originally appeared on pv-magazine-australia.com, and has been republished with permission by pv magazine (www.pv-magazine.com and www.pv-magazine-australia.com )

Read More

Lists by Topic

see all

Posts by Topic

See all

Recent Posts