Breiter Planet Hydrogen Blog

Daintree solar to hydrogen microgrid closing on reality

Feb 27, 2020 9:45:00 AM / by Blake Matich, pv magazine posted in Policy, Politics, Energy Storage, Markets, Microgrids, Greenhouse Gas Emissions, Decarbonization, Infrastructure, Climate Change, Hydrogen, Green Hydrogen, Highlights, Australia, Sustainability, Queensland

0 Comments

Image: Warren Entsch MP

 

In May 2019, a federal government grant of $990,150 backed Daintree Renewable Energy Pty Ltd toward a feasibility study that would take the fully renewable solar baseload-power microgrid to ‘shovel ready’ status within 12 months. If what Federal MP Warren Entsch has said is true, construction on the project should be underway in a matter of months. 

“Work commenced in early December 2019,” said Entsch, “and will be finalised in July 2020…The final report will include a complete series of engineering and technical design packages including a detailed energy load profile study, microgrid management design, solar generation and storage analysis and design, electrical and civil work designs and microgrid economic analysis.” 

Because the Daintree is a World Heritage Protected Rainforest there are heavy restrictions on planning and development. Because of this, Entsch has also quashed the rumour that further development in the region was on the cards. The microgrid project is it, and, Entsch assures us, it “is being designed to align with the strict planning regime and accommodate energy requirements for existing population and businesses.” 

The proposed microgrid would reduce the Daintree area’s reliance on diesel dramatically. Currently, the region relies on four million litres of diesel fuel per year to generate power. 

Volt Advisory Group project manager Richard Schoenemann said work on the project was “actually” slightly ahead of schedule. “It will remove the need to burn dirty and inefficient diesel in the Daintree,” said Schoenemann, “allowing customers to have access to a cleaner, more affordable, more reliable source of energy.” 

“But more importantly,” Schonemann stressed, “once the concept is demonstrated and up-and-running it will have enormous potential to improve the power supply and lives of people living in remote communities including throughout the Torres Strait.” 

Like many remote island communities, Torres Strait Islanders would greatly benefit from the sustainable renewable energy supplied by solar based microgrids.

The federal government grant forms part of its $50.4 million Regional and Remote Communities Reliability Fund, part of the Morrison Government’s $2 billion Climate Solutions Fund. You may remember the Climate Solutions Fund as the pitiful federal effort toward the nation’s Paris targets that was supposed to be a 10-year investment plan but has already been pushed to 15 years, cutting the investment by 30%.  

Under the scheme, the Coalition government plans to support exploratory work for up to 50 off-grid and fringe-of-grid feasibility studies, and take proposals like the Daintree region project to the investment stage.

Read More

Green hydrogen costs projected to decrease by up to 60% by 2030

Feb 4, 2020 9:00:00 AM / by Marija Maisch, pv magazine posted in Energy Storage, Markets, Decarbonize, Decarbonization, Climate Change, Hydrogen, Green Hydrogen, World, utility scale storage, Australia, Technology

0 Comments

Green hydrogen can be produced through electrolysis from any low-cost energy source.

Image: Siemens

 

Hydrogen cost competitiveness is closer than previously thought and scaling up existing hydrogen technologies will deliver competitive low-carbon solutions across a wide range of applications by 2030, finds a new report published by Hydrogen Council. Yet, to reach this scale, there is a need for investment, policy alignment, and demand creation.

As scale-up of hydrogen production, distribution, as well as of equipment and component manufacturing continues, cost is projected to decrease by up to 50% by 2030 for a wide range of applications, making hydrogen competitive with other low-carbon alternatives and, in some cases, even conventional option, finds the report prepared by global consultancy McKinsey. To deliver on this opportunity, supporting policies will be required in key geographies, including Australia, together with investment support of around US$70 billion.

“Based on real cost data from the industry, the analysis shows that a number of hydrogen solutions can become competitive until 2030 already.” says Bernd Heid, Senior Partner at McKinsey & Company. “Out of 35 use cases analysed, at-scale hydrogen can be the lowest cost low-carbon solution in 22 use cases – such as in the steel industry and heating for existing buildings. And it can beat fossil-based solutions at scale in 9 use cases – for example in heavy-duty transport and trains.”

2030 promise

Strong fall in the cost of producing low carbon and renewable hydrogen is one of the main drivers of this cost trajectory and hydrogen produced via electrolysis is identified as one of the areas where investment until 2030 would make the biggest difference. According to the report, achieving competitive renewable hydrogen from electrolysis will require the deployment of aggregated 70 GW of electrolyzer capacity, with an implied cumulative funding gap with grey production of $US20 billion.

In an earlier analysis, Wood Mackenzie also identified 2030 as the year when green hydrogen, produced primarily by solar electrolysis, would reach cost parity. According to the consultancy, renewables hydrogen could reach parity in Australia, Germany, and Japan by 2030, based on US$30/MWh renewable electricity and 50% utilization hours for electrolyzers.

In production, the cost of low-carbon and/or renewable hydrogen production will fall drastically by up to 60% over the coming decade, the Hydrogen Council report states. This can be attributed to the falling costs of renewable electricity generation, scaling up of electrolyzer manufacturing, and the development of lower-cost carbon storage facilities. Although it identified the same drivers behind falling costs, the International Energy Agency (IEA) was more conservative in its forecast. Its earlier analysis showed that the cost of producing hydrogen from renewable electricity could fall around 30% by 2030.

“2020 marks the beginning of a new era for energy: as the potential for hydrogen to become part of our global energy system becomes a reality, we can expect fewer emissions and improved security and flexibility. This announces the decade of hydrogen,” said Benoît Potier, Chairman and CEO of Air Liquide and Co-chair of the Hydrogen Council. “A clean energy future with hydrogen is closer than we think, because the industry has been working hard on addressing key technology challenges.”

While often touted as the missing link in the energy transition, hydrogen has seen false dawns before. Declaring 2019 a critical year for hydrogen, the IEA said hydrogen was enjoying unprecedented momentum around the world. This was corroborated by the emergence of hydrogen roadmaps and strategies from around the world, which all suggested a large scale and rapid deployment of hydrogen technologies is expected from around 2030 onwards.

In Australia, state and federal energy ministers have given a tick of approval to the National Hydrogen Strategy prepared by chief scientist Alan Finkel and voiced support for a $370 million fund for green hydrogen projects. However, against high expectations of the country’s hydrogen export potential, The Australia Institute’s analysis has suggested that Australia has overhyped the potential demand for hydrogen exports by a factor of up to 11.

Read More

Lists by Topic

see all

Posts by Topic

See all

Recent Posts