Breiter Planet Hydrogen Blog

FPL ‘green’ hydrogen pilot could herald a scale-up using solar and wind resources

Mar 16, 2021 9:30:00 AM / by Tim Sylvia, pv magazine posted in Policy, Energy Storage, Markets, Business, Installations, Solar Cost & Prices, Grids, Integration, Technology, Sustainability, Utility Scale Markets, Renewables, Procurement, Markets & Policy, Florida

0 Comments

Image: Siemens

 

Within Florida Power & Light’s (FPL) recently-filed four-year rate request with the Florida Public Service Commission is a commitment to “investments to build a more sustainable energy future.”

The pledge in the regulatory filing includes the utility’s “30-by-30” plan to install 30 million solar panels in Florida by 2030, as well as plans to build what the utility said would be the world’s largest integrated solar-powered battery and a green hydrogen pilot project.

The battery system is the Manatee Energy Storage Center, a 409 MW behemoth that could begin serving customers in late 2021. FPL’s Gulf Power unit said on Feb. 25 that it had begun construction on the project. The project is expected to help speed the retirement of aging natural gas units at a nearby power plant.

The green hydrogen pilot project was first announced by NextEra Energy, FPL’s parent company, in July 2020.

NextEra plans to invest $65 million into the pilot, which will use power from otherwise curtailed solar energy to produce green hydrogen via a 20 MW electrolysis system.

It’s worth noting that NextEra ranks as one of the nation’s largest solar and wind developers. So, although a 20 MW pilot may not initially move the needle toot much, NextEra’s vast wind and solar also comes with a lot of curtailed renewable generation. If the pilot proves successful and scalable, the company could look toward a serious buildout of more hydrogen producing facilities that could replace fossil fuels.

For now, the green hydrogen produced as part of the pilot would replace some of the natural gas combusted at FPL’s 1.75 GW Okeechobee power plant. Rather than build a new hydrogen plant, FPL is retrofitting an existing plant to accommodate the fuel source.

 

This article originally appeared on pv-magazine-usa.com, and has been republished with permission by pv magazine (www.pv-magazine.com and www.pv-magazine-usa.com).

Read More

Electrolyzer overview: Lowering the cost of hydrogen and distributing its production

May 26, 2020 9:15:00 AM / by Cornelia Lichner, pv magazine posted in Policy, Energy Storage, Markets, Installations, Germany, Italy, Canada

0 Comments

Image: Shell Rheinland

 

 

Jan-Justus Schmidt has announced what could be a minor revolution in the hydrogen economy. A small device, about the size of a microwave oven, would enable any household to produce the chemical element. The Enapter founder and CEO says that the devices can already produce hydrogen for less than $7.60/kg. Before 2030, he wants to bring that figure down to $1.60/kg.

Schmidt is looking to achieve what many before him have tried and failed to do. He’s looking to create a system that produces hydrogen for self-consumption and for use as seasonal storage. The targeted costs are promising, provided there is cheap green electricity to power the electrolyzers.

Schmidt is not the only one to pursue this revolution. Several small and large companies are in the starting blocks. Central versus distributed is not only an issue in power generation. There is also lively debate about which approach is more promising for the production of green hydrogen.

Savings potential

Generating hydrogen is simple in principle. Electrolysis has been around since 1800. The method known as alkaline electrolysis has been in commercial use since the middle of the 20th century. It uses a cell with a cathode, an anode and an electrolyte based on a solution of caustic salts. When voltage is applied, water decomposes in the alkaline solution. Hydrogen is formed at the cathode and oxygen at the anode. Between the two electrodes is a membrane that only allows negatively charged ions of oxygen and hydrogen (OH-) to pass through, thus separating the gases. Heat is generated during the reaction which, when harnessed, increases its efficiency. The hydrogen obtained must then be cleaned, dried and if necessary, compressed.

The electrolyte is liquid, which means that the alkaline electrolyzer requires more peripheral equipment, such as pumps for the electrolyte, solution washing, and preparation. Although it is currently the cheapest of all electrolysis processes to purchase, it has relatively high maintenance costs.

The much more recent electrolysis method, which uses a proton exchange membrane (PEM), is different. It reverses the fuel cell principle and requires no liquid electrolyte. Water is pressed through a stack of two electrodes and a polymer membrane. It only allows positively charged hydrogen protons to pass through. Platinum is usually used as a catalyst in the cell. The thin cells consisting of a membrane and a pair of electrodes can be arranged in stacks to achieve better performance. Compared to alkaline electrolysis, PEM electrolysis has the advantage of quickly reacting to the fluctuations typical of renewable power generation. This technology is often used for distributed systems because the equipment is low-maintenance and delivers high-quality gas.

A newer variant is the anion exchange membrane (AEM) electrolysis employed by Enapter. Like alkaline electrolysis, this method allows negatively charged ions (OH-) to pass through the membrane. AEM avoids the use of the costly precious metals required as catalysts in PEM electrolysis. The process is also effective at smaller-scale, making it suitable for decentralized applications.

High-temperature electrolysis uses a somewhat different concept. Ceramic membranes that conduct ions at very high temperatures separate superheated steam at 600 to 800 degrees Celsius into oxygen and hydrogen. Since most of the energy required for this process is already provided by heat, the electrical energy requirement is lower. When industrial waste heat is used, which costs little or nothing, this method can be very efficient. Measured in terms of the electrical input, its efficiency is higher than with other methods.

Price strategy

Ultimately, however, efficiency is only indirectly important; what matters most is the cost. The overall cost comprises the cost of the electrolyzer, including maintenance and replacement of worn-out membranes, the price of the electricity used for the process, and any subsequent costs for drying, cleaning and compression of the gas, as well as transport.

A 2018 study by Fraunhofer ISE and IPA estimated the investment costs for a PEM electrolyzer that produces one standard cubic meter of hydrogen in one hour at around $7,600. In the meantime, however, prices have fallen to between $4,900 and $6,000, says Tom Smolinka, head of the department for chemical energy storage at Fraunhofer ISE and one of the authors of the study. The alkaline electrolyzers, which at the time of the study cost $3,300 and $6,000, are now said to be considerably cheaper in China. At the time the study was conducted, there were essentially no market-ready applications for high-temperature electrolysis.

Smolinka estimates that the production of a membrane-electrode unit – the heart of a PEM electrolysis cell – accounts for 60% to 70% of the total cost, while pure material costs – including the expensive precious metals – account for only 30% to 40%. Furthermore, he adds that the power electronics used in large electrolyzers are currently not yet a mass product, but rather a customer-specific one-off item. Accordingly, prices are likely to fall dramatically once sales volumes increase. Up to now, most electrolyzers have been manufactured in work processes involving little automation or even entirely by hand, says Smolinka. “Highly automated production, especially for cell components, as already exists for PEM fuel cells, would not be a problem technically.” However, he adds, that the current low level of market demand is preventing manufacturers from making the necessary investments.

Investment costs

A number of market players are working to bring down investment costs. An example of this is the joint venture between ITM Power and Linde, which plans to open a semi-automated factory in Sheffield, U.K., this year to produce 1 GW of electrolysis capacity per year, primarily for multi-megawatt projects, such as the one in Cologne. Other well-known companies have also announced major projects and are expanding production. NEL, for instance, is currently gearing up for a 20 MW project in Denmark, and Hydrogenics is readying the launch of a smiliar-sized project in Canada. Alongside project size, stack performance is also improving. Currently, stacks are generally available with an electrical input power of 400 kW. Soon, several of the players want to increase this capacity to 1 MW. Scaling the size should reduce costs.

Enapter takes a different approach. The Italian-German company is resolute in its commitment to a small standardized product that can be produced in ever larger quantities and then installed side-by-side as needed. Founder and CEO Schmidt draws parallels to the computer world to illustrate the plausibility of the concept. Distributed personal computers have replaced mainframe computers to a large extent, because high production volumes made them cheaper to make than a small number of mainframe computers. Similarly, the Enapter product is expected to reduce costs compared to the large central electrolyzers, which are not manufactured industrially.

This discussion about whether the goal is achieved faster by scaling up to larger units in smaller quantities or by scaling up to larger quantities of smaller units is common in many industries. Skeptics say that the latter approach is not as promising for electrolyzers for reasons of physics. Unlike computers, the performance of electrolyzers would not increase many times over as they were scaled down in size. On the other hand, with AEM electrolysis, the possible elimination of precious metals could make distributed generation viable for the mass market.

At a current price of $9,800, the device supplies half a cubic meter of hydrogen per hour, or one kilogram of hydrogen every 24 hours. With a targeted service life of 30,000 hours, the unit currently achieves a price of $7.30/kg, which corresponds to $0.19/kWh (calorific value). These figures, however, do not include the price of the 54 kWh of electricity required to produce 1 kilogram of hydrogen with AEM electrolysis. If we assume, for example, that the input electricity costs $0.055/kWh, this adds another $3/kg, or $0.075/kWh of hydrogen, to the production cost.

As soon as automated production at the Pisa site starts up as planned in four years time, the electrolyzer will be so cheap that the target of $1.64 per kilogram minus electricity costs will be achieved, says Schmidt. At that point, the developers hope that it would not only be worthwhile to use the device for distributed generation, but also to assemble larger aggregates, as in the computer example. Installing 416 of the units would achieve an output of 1 MW.

Source of uncertainty

The service-life of the devices is included in all of the cost estimates, which, as with any new technology, cannot be easily proven. For example, it is impossible to verify whether an AEM electrolyzer will really last 30,000 hours and a PEM electrolyzer between 60,000 and 80,000 hours, as the manufacturers claim. However, Schmidt from Enapter and Tom Smolinka’s researchers agree that AEM and PEM cells scarcely age at all over time. Also, whether the electrolyzer runs under full load or only at half power makes little difference.

Ultimately, the membrane itself is not the only factor that determines service life. “The greatest influence on the service life is the water quality,” says Smolinka. Impurities accumulate in the fine pores of the membrane, which block them, or in the case of salts, form bridges.

Another factor that gums up electrolysis cells is the temperature. Excessive loads lead to higher temperatures in the entire system, and unevenly coated electrodes can create hot spots.

Areva H2Gen will address this challenge over the next three years. In a research project at Industriepark Höchst, the company is using a 1 MW PEM electrolyzer. In addition to hydrogen production, it will also provide primary control power in the future, which means that it will sometimes be operated at twice its capacity, while at other times at only a fraction of its 250 kW capacity. If the concept proves practicable, it will not only open up additional income for operators of electrolysis plants but could also help to stabilize the electrical grid.

According to cost calculations by project manager Lucas Busemeyer, Enapter’s cost objective can already be achieved today with Areva H2Gen’s centralized unit. With continuous utilization of the plant – 8,000 operating hours per year over a period of 20 years – a hydrogen price of $3.90/kg is achievable at an electricity price of $0.055/kWh. This estimate assumes that the PEM stack would be replaced once after 10 years.

Significant reductions

Since power costs are a decisive factor in total generation costs, the technology and its utilization cannot be separated. Anyone purchasing green electricity from the grid, whether through PPAs or as certified green electricity, has to consider connection fees, levies and surcharges on the electricity price, whatever the legal regulations may be. However, the electrolyzer can connect directly to an existing gas or hydrogen network, as is the case with Shell and Areva H2Gen, in Höchst.

Operators who generate hydrogen with smaller solar systems may be able to make use of the heat and thus increase economic efficiency, and may also use the fuel directly for heating or for refueling vehicles without the need to transport it. Such producers also save a portion of the levies and surcharges on the electricity price and reduce the burden on the grid.

In principle, however, investors who plan to use solar energy alone to operate the electrolyzer will have to accept a longer payback period, as the energy is only available for a low number of full-load hours.

Significant reductions in electricity consumption for electrolysis can be achieved with high-temperature devices that have the highest electrical efficiencies of 80% to 90%. One of the pioneers for this technology is Sunfire from Dresden. Instead of 55 kWh as in PEM electrolysis, only 41.4 kWh of electricity are needed to produce 1 kilogram of hydrogen. To do this, however, the electrolysis cell must be heated. It is therefore a good idea to install them where industrial waste heat is generated, such as in steel plants. If steel production is to be CO2-free, sector coupling is perfect, because the hydrogen produced can be consumed immediately. With the oxygen membrane Sunfire uses, not only can water be split to produce hydrogen, but any molecule containing oxygen, such as hydrocarbons or even carbon dioxide, can be separated, says Nils Aldag, COO of Sunfire. The resulting gas can easily be processed into synthetic crude oil, which is much easier to transport than bulky hydrogen.

The question of centralized or distributed electrolysis will probably not be an either/or but a both/and matter in the end. The task is enormous. The Shell Rheinland refinery in Cologne alone, which according to the company is the largest refinery in Germany, requires 180,000 metric tons of hydrogen a year. It is still produced mainly by steam reformation from natural gas, which produces a lot of climate-damaging CO2. Since mid-2019, the company has been building a 10 MW electrolysis plant at the Wesseling plant. According to Shell, the world’s largest plant utilizing proton exchange membrane technology in the world will be installed there. And yet around 140 such plants would be necessary for just this one company to switch to green hydrogen.

 

Schedule a call with us to see what green hydrogen would look like for you: SCHEDULE A CALL WITH US

 

This article originally appeared on pv-magazine-usa.com, and has been republished with permission by pv magazine (www.pv-magazine.com and www.pv-magazine-usa.com)

Read More

UNSW hydrogen storage technology to debut at community solar farm

Apr 7, 2020 9:15:00 AM / by Marija Maisch, pv magazine posted in Community, Energy Storage, Finance, Installations, Community Solar, Hydrogen, Green Hydrogen, Highlights, utility scale storage, Australia, Grids, Integration, New South Wales

0 Comments

Providence Asset Group's Mr Llewellyn Owens, NSW Energy Minister Matt Kean, UNSW's Professor Kondo-Francois Aguey-Zinsou.

Image: UNSW

 

More than $15 million in funding from the state government’s Regional Community Energy Fund was announced on Tuesday to help regional communities in New South Wales (NSW) take control of their energy bills and benefit from the economic opportunities presented by the energy transition. The awarded projects will unlock nearly 17.2 MW in electricity generation and up to 17.9 MW/39.3 MWh of energy storage, leveraging approximately $36 million in private investment.

Six projects will install solar, four of which will collocate battery storage on site, and one will deliver a shared community battery scheme.  The list of approved projects includes 5 MW Bayron Bay Solar Farm alongside a 5 MW / 10MWh DC-coupled battery; 500 kW Gloucester Community Solar Farm; the Goulburn Community Dispatchable Solar Farm involving 1.2 MW of solar PV and 400 kW / 800 kWh of battery storage; 1 MW Haystack Solar Garden; Orange Community Renewable Energy Park with a 5 MW solar farm and up to 5 MW / 5 MWh of battery storage; and a 1 MW / 2MWh battery, which will be installed under Enova Community’s Shared Community Battery Scheme for regional NSW.

A project that stands out in the group for its combination of on-site renewable energy technologies is the Manilla Community Solar. The development will feature 4.5 MW of solar PV, 4.5 MW / 4.5MWh of battery storage and a 2 MW /17 MWh hydrogen energy storage system. It will be backed by a $3.5 million grant that has been awarded to the Manilla Solar Project, a partnership between Manilla Community Renewable Energy and green investment outfit Providence Asset Group.

Plans for the Manilla solar farm were announced in December as one of the first of up to 30 community solar initiatives to be rolled out across regional Australia. On Tuesday, it was confirmed that the development will feature an advanced hybrid battery storage system in addition to the solar and battery storage components. According to UNSW, solid-state hydrogen technology will be installed in 20-foot containers with an energy density of 17 MWh and will be a first of this kind in the world in terms of scale.

New generation of batteries

The technology was first unveiled last March when a team of researchers at UNSW headed by Professor Kondo-Francois Aguey-Zinsou said they had developed a unique system that allowed for cheap storage and transportation of hydrogen and could provide a new alternative for energy storage within two years.

Their research, conducted in partnership with H2Store, had been underpinned with $3.5 million in backing from Providence Asset Group. The funding was intended to help the team deliver phase one of a four-stage project that includes the creation of prototypes of their hydrogen energy storage solution for residential and commercial use, demonstration units, and testing and optimization that will enable full commercialization of the product.

Speaking about the first phase of the project, Professor Kondo-Francois Aguey-Zinsou said that he believed his invention would offer significant advantages over current power storage solutions for home solar systems, such as the Tesla Powerwall battery.

“We will be able to take energy generated through solar panels and store it as hydrogen in a very dense form, so one major advantage of our hydrogen batteries is that they take up less space and are safer than the lithium-ion batteries used in many homes today,” he said, adding that the system can actually store about seven times more energy than other that are currently available. Other advantages include a lifespan of about 30 years compared with under 10 for other systems and no fire risk.

On Tuesday, Professor Aguey-Zinsou said: “I am very excited to see the technology we developed in the lab here at UNSW scaled up and used in real-world applications. It will prove the feasibility of hydrogen storage at scale and position Australia to become a major player in transitioning to renewable energy.”

Construction will commence on the Manilla Solar Project in the second half of 2020 and is expected to be operational early 2021. The storage component will be installed during 2021.

 

Interested in how hydrogen storage can be incorporated into your solar facility? Schedule a call with us:

 

SCHEDULE A CALL WITH US

 

This article originally appeared on pv-magazine-australia.com, and has been republished with permission by pv magazine (www.pv-magazine.com and www.pv-magazine-australia.com.)

Read More

Hydrogen production coupled to solar and storage to debut in Spain

Mar 24, 2020 9:15:00 AM / by Pilar Sanchez Molina, pv magazine posted in Energy Storage, Installations, Energy Efficiency, Hydrogen, Spain, Highlights, World, Global Warming, Technology, Electrification, Sustainability, Industrial PV, Commercial PV, Analysis, Environmental Impact

0 Comments

The project will be the first hydrogen injection experience in a real gas network in Spain with support for small-scale electrical storage, and will be carried out at the Enagás regasification plant in Cartagena.

Image: Enagás

 

Gas multinational Enagás and Ampere Energy, a Spain-based battery provider, have signed an agreement to begin joint production of hydrogen with solar power and energy stored in batteries.

The two companies will jointly work on several R&D projects to produce renewable hydrogen for self-consumption at the gas plant.

The project they are now planning will be the first hydrogen injection experience into a gas network in Spain, with small-scale storage as a back-up. It will be carried out at the regasification plant that Enagás operates in Cartagena, in the southern province of Murcia.

Ampere Energy has installed its Ampere Energy Square S 6.5 equipment at the Cartagena plant, which will have new storage and intelligent energy management solutions.

The installed equipment will allow Enagás to maximize the energy efficiency of the Cartagena gasification plant and reduce the environmental impact and its electricity bill up to 70%, according to the two companies.

The battery will store energy coming from both the photovoltaic system and the power grid, and will monitor this energy. Through machine learning algorithms and data analysis tools, the system will anticipate the consumption patterns of the plant, predict the available solar resource, and track prices in the electricity market, identifying the moments in which the cost is lower.

“This alliance opens the door to a long-term pact between Ampere Energy and Enagás to undertake joint R&D projects for energy storage and services,” both companies added.

 

If you are interested in learning how Green Hydrogen can work for you, schedule a call with us:

SCHEDULE A CALL WITH US

 

This article originally appeared on pv-magazine-usa.com, and has been republished with permission by pv magazine (www.pv-magazine.com and www.pv-magazine-usa.com).

Read More

Horizon Power looks at green hydrogen for WA coastal town of Denham

Feb 20, 2020 9:15:00 AM / by Marija Maisch, pv magazine posted in Community, Energy Storage, Installations, Australia, Grids, Integration, Technology, Western Australia, Sustainability

0 Comments

The Denham hydrogen plant will be powered by solar.

Image: Horizon Power

 

The coastal town on Denham could be on the way to become zero emissions thanks to a green hydrogen demonstration project proposed by WA’s regional utility Horizon Power. The hydrogen plant powered by solar energy will supplement existing wind turbines, which already produce 60% of the town’s electricity.

Located in the Shark Bay World Heritage Area, Denham’s existing power supply is a combination of a Horizon Power owned and operated diesel facility, and a Synergy wind farm. Both assets are aging and in need of replacement.

Horizon Power has sought expressions of interest from companies for the supply of the hydrogen electrolyser and fuel cell and to design and construct of the plant. It is also looking at state and federal funding for the trial, while supporting the State Government’s Renewable Hydrogen Strategy by investigating the possibility of demonstrating the use of hydrogen as a future source of energy for the town.

“As part of our commitment to deliver cleaner, greener energy to our regional customers, we want to investigate the potential to develop a hydrogen demonstration plant to test the suitability and capability of hydrogen as a renewable energy source for electricity generation in the future,” Horizon Power Chief Executive Officer Stephanie Unwin said.

If the project is determined to be viable, construction would begin in February 2021. “Proving the reliability of such a hydrogen plant provides the opportunity to expand the plant to supply the full power requirements for the town in the future,” Urwin added.

Last year, the WA Government launched a strategy to set course for the state’s renewable hydrogen future with a focus on four strategic investment areas: export, use of renewable hydrogen in remote applications, blending in the gas network and use in transport. To support projects on ground, the authority last month opened a $10 million Renewable Hydrogen Fund and made cash available to feasibility studies, demonstration or capital works projects, to facilitate private investment.

Last week, the state government set aside $1.68 million in funding from the Renewable Hydrogen Fund toward the support of seven renewable hydrogen feasibility studies, including an electrolysis production plant and solar hydrogen for waste collection.

“Western Australia needs to explore how we can produce, use and provide energy to our international partners through clean and reliable sources – renewable energy via hydrogen provides a means to do this,” Regional Development Minister Alannah MacTiernan said. She noted the government received 19 feasibility study applications of which it chose seven, which confirmed the strong interest of developing a renewable hydrogen industry in WA.

On the ground, Canadian gas giant ATCO is already blending renewable hydrogen into the on-site natural gas network at its solar and battery hydrogen innovation hub in WA. The blend will be used throughout the Jandakot depot as the first step in exploring the potential of hydrogen for home use in gas appliances.

Last year, a massive green hydrogen production project was unveiled for Western Australia with Siemens on board as technology partner. The project proposed by Hydrogen Renewables Australia (HRA) aims to produce green hydrogen for local industry and export to Asia from up to 5,000 MW of combined wind and solar capacity.

 

This article originally appeared on pv-magazine-australia.com , and has been republished with permission by pv magazine (www.pv-magazine.com and www.pv-magazine-australia.com ).

Read More

Australia’s National Hydrogen Strategy adopted, funds for new projects allocated

Jan 28, 2020 8:35:00 AM / by Marija Maisch, pv magazine posted in Policy, Markets, Utility-Scale PV, Installations, Decarbonize, Fossil Fuels, Coal, Decarbonization, Hydrogen, Green Hydrogen, Highlights, World, utility scale storage, Australia, Grids, Integration, Technology

0 Comments

 

At the Friday meeting in Perth, the COAG Energy Council agreed to the National Hydrogen Strategy, which is expected to pave the way for a hydrogen economy that would enhance Australia’s energy security, create jobs and build an export industry valued in billions. The federal government used the meeting to announce $370 million would be directed to a new fund aimed at developing Australia’s hydrogen industry.

The money to bankroll green hydrogen projects will come from existing allocations to the Clean Energy Finance Corporation (CEFC) and Australian Renewable Energy Agency (ARENA), with the former tipping in $300 million and the latter $70 million. According to Energy Minister Angus Taylor, the funding will help Australia to realise its potential as a leading hydrogen supplier to key export markets, particularly in Asia.

Despite positive aspects, the National Hydrogen Strategy remains “technology-neutral”, with both hydrogen produced using renewable energy and the one via fossil fuels with “substantial” carbon capture and storage (CCS) in the game. Throughout the consultation process, Australia’s Chief Scientist Alan Finkel continued to push Australia toward hydrogen produced by solar and wind, but also remained attached to the fossil fuel-CSS idea. The stance was reflected in the Strategy itself.

Notwithstanding the efforts by ACT Energy Minister Shane Rattenbury on Friday to change the strategy so it only supported green hydrogen, federal resources minister Matt Canavan said after the meeting the government would be encouraging all forms of hydrogen creation, including production using brown coal.

“We have a really challenging task to bring down the costs of supplying hydrogen to the world,” he said. “Getting all of those costs down means trying different things at the moment and it’s not the time to foreclose different ways of producing hydrogen which would limit our ability to reduce those costs in the supply chain.”

However, the good news is that the Strategy also envisaged the development of a hydrogen certification scheme that will show the emissions intensity of hydrogen produced in Australia. With such transparency, prospective importers will be aware of the environmental impacts of the hydrogen they use. And Australia expects to have many trading partners, particularly in Asia, including China, South Korea, Japan and Singapore, which are already looking to develop hydrogen economies.

As established in previous studies, capitalising on the growing demand for hydrogen could result in an export industry worth $1.7 billion by 2030, and could provide 2,800 jobs, most likely regional ones. On top of this, two international reports have confirmed Australia’s potential as a future major hydrogen supplier. The World Energy Council identified Australia as a ‘giant with potential to become a world key player’, while the International Energy Agency projected that Australia could easily produce 100 million tonnes of oil equivalent of hydrogen, which could replace 3% of global gas consumption today.

Overhigh expectations?

However, a report by The Australia Institute (TAI) released in the run-up to the COAG meeting found the projected demand for hydrogen had been overstated. The think-tank argued the hydrogen export projections from consulting firm ACIL Allen, which the government is referring to, were 11 times higher than Japan’s official target, noting that even the low demand projection is two and half times the official target. The projections for South Korea are similarly high by comparison with government plans.

“Prematurely establishing a hydrogen export industry based on highly inflated demand figures may lock out the cleanest form of hydrogen, using renewable energy and electrolysis, because the technology isn’t cost competitive at this stage,” said Richie Merzian, Climate & Energy Program Director at TAI.“If hydrogen development is rushed in Australia it could see fossil fuels locked in as a global energy source for decades to come. The emissions will make it impossible to comply with Australia’s obligations under the Paris Agreement.”

According to a recent analysis from Wood Mackenzie, green hydrogen, produced primarily by solar electrolysis, will reach cost parity in Australia by 2030 based on US$30/MWh renewable electricity and 50% utilisation hours for electrolysers. But, the Hydrogen Strategy sets a vision for Australia to already become a major global player by that point. Meanwhile, CCS continues to be a costly option in Australia and across the world and often just an excuse to avoid taxing carbon and pull support from renewable energy technologies.

“A decade ago the fossil fuel industry promoted clean coal using CCS and now it is promoting hydrogen using the same unsuccessful technology. CCS projects have repeatedly failed to live up to promises, both domestically and globally, and missed their targets by a very large margin time and time again,” Merzanin said. “The only way to make hydrogen truly sustainable is to produce it using water and powered by renewable energy sources. Australia has time to establish and lead a global renewable hydrogen industry and should focus research and development efforts in that area exclusively.”

 

This article originally appeared on pv-magazine-australia.com and has been republished with permission by pv magazine (www.pv-magazine.com and www.pv-magazine-australia.com

Read More

Lists by Topic

see all

Posts by Topic

See all

Recent Posts