Breiter Planet Hydrogen Blog

FPL ‘green’ hydrogen pilot could herald a scale-up using solar and wind resources

Mar 16, 2021 9:30:00 AM / by Tim Sylvia, pv magazine posted in Policy, Energy Storage, Markets, Business, Installations, Solar Cost & Prices, Grids, Integration, Technology, Sustainability, Utility Scale Markets, Renewables, Procurement, Markets & Policy, Florida

0 Comments

Image: Siemens

 

Within Florida Power & Light’s (FPL) recently-filed four-year rate request with the Florida Public Service Commission is a commitment to “investments to build a more sustainable energy future.”

The pledge in the regulatory filing includes the utility’s “30-by-30” plan to install 30 million solar panels in Florida by 2030, as well as plans to build what the utility said would be the world’s largest integrated solar-powered battery and a green hydrogen pilot project.

The battery system is the Manatee Energy Storage Center, a 409 MW behemoth that could begin serving customers in late 2021. FPL’s Gulf Power unit said on Feb. 25 that it had begun construction on the project. The project is expected to help speed the retirement of aging natural gas units at a nearby power plant.

The green hydrogen pilot project was first announced by NextEra Energy, FPL’s parent company, in July 2020.

NextEra plans to invest $65 million into the pilot, which will use power from otherwise curtailed solar energy to produce green hydrogen via a 20 MW electrolysis system.

It’s worth noting that NextEra ranks as one of the nation’s largest solar and wind developers. So, although a 20 MW pilot may not initially move the needle toot much, NextEra’s vast wind and solar also comes with a lot of curtailed renewable generation. If the pilot proves successful and scalable, the company could look toward a serious buildout of more hydrogen producing facilities that could replace fossil fuels.

For now, the green hydrogen produced as part of the pilot would replace some of the natural gas combusted at FPL’s 1.75 GW Okeechobee power plant. Rather than build a new hydrogen plant, FPL is retrofitting an existing plant to accommodate the fuel source.

 

This article originally appeared on pv-magazine-usa.com, and has been republished with permission by pv magazine (www.pv-magazine.com and www.pv-magazine-usa.com).

Read More

Global green hydrogen project pipeline reaches 50 GW

Sep 14, 2020 10:00:00 AM / by Emiliano Bellini, pv magazine posted in Policy, United States, Energy Storage, Markets, Germany, Hydrogen, Europe, Spain, Green Hydrogen, China, Global, World, utility scale storage, Grids, Integration, Sustainability, Japan, Hydrogen Production, Markets & Policy, Hydrogen Economy, Saudi Arabia, South Korea

0 Comments

The world already has a nascent hydrogen economy, according to IEEFA.

Image: Roy Luck/Flickr

 

The Institute for Energy Economics and Financial Analysis (IEEFA) estimates there are 50 green hydrogen projects under development worldwide. Those projects, have a planned annual production capacity of 4 million tons of hydrogen and a total renewable power capacity of 50 GW, according to the Ohio-based thinktank, with their combined capital cost estimated at $75 billion.

In its Asia, Australia and Europe Leading Emerging Green Hydrogen Economy, but Project Delays Likely study, IEEFA said the projects announced represent an embryonic global green hydrogen economy.

“Most of these 50 projects are at an early stage, with just 14 having started construction and 34 at a study or memorandum-of-understanding stage,” the report noted. “However, many of the 50 newly-announced green hydrogen projects could face delays due to uncertain financing, cumbersome joint venture structures and unfavorable seaborne-trade economics.”

The study stated the majority of the projects announced will begin commercial operation in the middle of the decade, with large scale facilities starting up in 2022-23 and 2025-26.

The report’s authors said the hydrogen strategies of China, Japan and South Korea appear to prioritize hydrogen generated using natural gas – designated grey hydrogen, or blue if facilities are intended to feature carbon capture technology – rather than ‘green’ hydrogen generated using renewable energy. IEEFA described the €430 billion ($507 billion) hydrogen strategy of the European Union as the the most ambitious and purposeful energy transition policy to date.

 

“The EU’s hydrogen capex [capital expenditure] commitment far outweighs the commitment from Korea and Japan, reflecting the EU’s ambition to remodel its energy system and vertically integrate the hydrogen value chain with wind and solar power, electrolysis, distribution and applications,” stated the report.

Annual green hydrogen demand could reach 8.7 million tonnes by 2030, according to the IEEFA study, prompting a big supply shortfall given the current capacity of the project pipeline.

The report lists all publicized projects, including five facilities announced in the last two months – an 85 MW Nikola Motor Company plant in the U.S.; a 4 GW facility in Saudi Arabia planned by Air Products, Acwa Power and Neom; a 20 MW electrolyser being developed by U.S. energy company NextEra; a 100 MW solar park, storage facility and hydrogen production site in Puertollano, central Spain, by Iberdrola; and a 30 MW electrolyzer project by German consortium WestKüste100.

“There remains ample room for more hydrogen projects to meet global demand and further policy support will be necessary to grow this nascent industry,” added the report’s authors.

 

Schedule a Call with us today to see how we can work together and help transition to a clean energy economy.

SCHEDULE A CALL WITH US

 

Read More

Project NEO: 1 GW of green hydrogen baseload power for NSW

Jun 12, 2020 9:30:00 AM / by Marija Maisch, pv magazine posted in Decarbonize, Decarbonization, Fuel Cells, Hydrogen, Energy Transition, Green Hydrogen, Australia, Grids, Integration, Technology, Employment, New South Wales, Clean Energy, Clean Energy Jobs, Technology & R&D

0 Comments

IBE estimates that the offtake agreements for its Project NEO will amount to over $7.5 billion.

Image: Horizon Power

 

 

Perth-based Infinite Blue Energy (IBE) has unveiled a bold plan to deliver Australia’s first green hydrogen baseload power plant that could change the electricity landscape in New South Wales (NSW). Project NEO is initially focused on providing 1000 MW of green hydrogen using solar, wind and hydrogen fuel cells for 24/7 electricity supply.

The project, which will commence with a feasibility study and detailed design over the next 18 months, aims to transition energy-intensive, fossil fuel-dependent industries in NSW to 100% renewables by 2027. To provide reliable baseload power, NEO will use solar and wind to produce hydrogen, a certain amount of which will be stored in fuel cells and available when there is no wind or sun, on cloudy days and at night. 

“The vision at IBE is to show the world, first and foremost, that Australia has the technology, skills and entrepreneurial mindset to be a true leader in the development of green hydrogen plants,” IBE CEO Stephen Gauld said. “We are currently in robust negotiations with major electricity users in the NSW Hunter Region that have confirmed their intentions to transition to green hydrogen baseload electricity this decade.”

Led by a team with substantial experience in the oil and gas sector, IBE has only recently appeared on the Australian energy scene. In April, the company unveiled plans for the first of its many green hydrogen projects in Western Australia (WA), announcing an initial $300 million investment for its first phase of construction. Other companies that have announced gigawatt-scale plans in WA include BP Australia, which is looking to develop around 1.5 GW of greenfield solar and wind projects for its green hydrogen and ammonia plans, and Siemens, which aims to produce green hydrogen for local industry and export to Asia from up to 5 GW of wind and solar capacity.

Another megaproject underway in WA is the Asian Renewable Energy Hub (AREH), which could feature up to 15 GW of solar and wind capacity with the goal to supply local energy users in the Pilbara region and develop a green hydrogen manufacturing hub for domestic use and export to Asia. Recently, AREH has moved forward after being recommended for environmental approval.

Fast-tracking NSW’s energy transition

Project NEO, which comes with a $2.7 billion price tag, is expected to feature 235 wind turbines and a PV array covering approximately 1,250 hectares of land. The cumulative renewable energy capacity will stand at around 3.5 GW and will be deployed at high-value sites for solar and wind production, in combination with a “distributed generation model”. “This allows the generation sites to blend in with existing land users with minimal impact,” IBE says.

Over 2 million NSW homes stand to benefit from Project NEO, the company says, in addition to other economic benefits. IBE anticipates that a significant proportion of the workforce required for Project NEO will be drawn from the existing coal-fired power stations in NSW, since many of the skills are similar.

“Project NEO will produce local and indirect employment, allow existing industries to decarbonize, and facilitate the establishment of new industries,” Gauld says. “It will localize manufacturing, give a 100% green supply of power to NSW, fuel the reduction of the state’s carbon emissions and can therefore play a pivotal role in ultimately helping Australia become leaders in carbon emission reduction.”

 

This article originally appeared on pv-magazine-australia.com and has been republished with permission by pv magazine (www.pv-magazine.com and www.pv-magazine-australia.com).

Read More

Hydrogen is the first viable option for seasonal storage

Apr 21, 2020 9:15:00 AM / by William Driscoll, pv magazine posted in California, Energy Storage, World, Grids, Integration, Utah

0 Comments

Plan for storing hydrogen in Utah salt caverns

Images: Los Angeles Department of Water and Power

 

Seasonal storage of hydrogen to balance renewable generation will be cost-competitive in 2050, says DNV GL, a Norway-based consulting firm that advises the energy and shipping industries.

The firm modeled nonstop production of hydrogen every summer, using electrolysis units powered by market electricity. The hydrogen would be compressed and stored underground in salt caverns or depleted gas fields, and the following winter would be converted nonstop to electricity, using fuel cells. Daily balancing would be achieved using batteries and pumped hydro. To the extent the entire grid ran on renewables in the summer, the hydrogen would be “green,” or renewably produced.

A project along these lines is under development in Utah, and would use underground salt caverns to store hydrogen. The hydrogen would be renewably produced by 2045, to help Los Angeles achieve its renewables goal.

The DNV GL study also considered hydrogen produced on another continent using solar power, stored either as-is, or after conversion to ammonia or synthetic methane, and shipped to its destination each winter. These options (bars 3 to 5 below) have costs more than double that of locally produced hydrogen (bar 6), as they involve more steps, each with its own costs. All options were compared to wintertime combustion of natural gas with a carbon tax, pegged at 54 euros per metric ton of carbon dioxide (bar 1).

DNV GL projects that a seasonal storage business will be preceded by a market for synthetic fuels. This is the case in the Utah hydrogen storage project, where plans for the early project years call for hydrogen to be mixed with natural gas for combustion in gas turbines.

DNV GL also projects that in 2050, ample short-term storage capacity will be available, in the form of grid batteries, electric vehicle-to-grid applications, and pumped hydro, “to accommodate daily and weekly cycles” in both renewable generation and electricity demand.

 

DNV GL’s report, The promise of seasonal storage, includes an appendix showing capital and operating costs for all technologies evaluated.

 

Interested in seeing if Green Hydrogen can work for you? Reach out to us and schedule a call for more information:

 

SCHEDULE A CALL WITH US

 

 

This article originally appeared on pv-magazine-usa.com, and has been republished with permission by pv magazine (www.pv-magazine.com and www.pv-magazine-usa.com).

Read More

UNSW hydrogen storage technology to debut at community solar farm

Apr 7, 2020 9:15:00 AM / by Marija Maisch, pv magazine posted in Community, Energy Storage, Finance, Installations, Community Solar, Hydrogen, Green Hydrogen, Highlights, utility scale storage, Australia, Grids, Integration, New South Wales

0 Comments

Providence Asset Group's Mr Llewellyn Owens, NSW Energy Minister Matt Kean, UNSW's Professor Kondo-Francois Aguey-Zinsou.

Image: UNSW

 

More than $15 million in funding from the state government’s Regional Community Energy Fund was announced on Tuesday to help regional communities in New South Wales (NSW) take control of their energy bills and benefit from the economic opportunities presented by the energy transition. The awarded projects will unlock nearly 17.2 MW in electricity generation and up to 17.9 MW/39.3 MWh of energy storage, leveraging approximately $36 million in private investment.

Six projects will install solar, four of which will collocate battery storage on site, and one will deliver a shared community battery scheme.  The list of approved projects includes 5 MW Bayron Bay Solar Farm alongside a 5 MW / 10MWh DC-coupled battery; 500 kW Gloucester Community Solar Farm; the Goulburn Community Dispatchable Solar Farm involving 1.2 MW of solar PV and 400 kW / 800 kWh of battery storage; 1 MW Haystack Solar Garden; Orange Community Renewable Energy Park with a 5 MW solar farm and up to 5 MW / 5 MWh of battery storage; and a 1 MW / 2MWh battery, which will be installed under Enova Community’s Shared Community Battery Scheme for regional NSW.

A project that stands out in the group for its combination of on-site renewable energy technologies is the Manilla Community Solar. The development will feature 4.5 MW of solar PV, 4.5 MW / 4.5MWh of battery storage and a 2 MW /17 MWh hydrogen energy storage system. It will be backed by a $3.5 million grant that has been awarded to the Manilla Solar Project, a partnership between Manilla Community Renewable Energy and green investment outfit Providence Asset Group.

Plans for the Manilla solar farm were announced in December as one of the first of up to 30 community solar initiatives to be rolled out across regional Australia. On Tuesday, it was confirmed that the development will feature an advanced hybrid battery storage system in addition to the solar and battery storage components. According to UNSW, solid-state hydrogen technology will be installed in 20-foot containers with an energy density of 17 MWh and will be a first of this kind in the world in terms of scale.

New generation of batteries

The technology was first unveiled last March when a team of researchers at UNSW headed by Professor Kondo-Francois Aguey-Zinsou said they had developed a unique system that allowed for cheap storage and transportation of hydrogen and could provide a new alternative for energy storage within two years.

Their research, conducted in partnership with H2Store, had been underpinned with $3.5 million in backing from Providence Asset Group. The funding was intended to help the team deliver phase one of a four-stage project that includes the creation of prototypes of their hydrogen energy storage solution for residential and commercial use, demonstration units, and testing and optimization that will enable full commercialization of the product.

Speaking about the first phase of the project, Professor Kondo-Francois Aguey-Zinsou said that he believed his invention would offer significant advantages over current power storage solutions for home solar systems, such as the Tesla Powerwall battery.

“We will be able to take energy generated through solar panels and store it as hydrogen in a very dense form, so one major advantage of our hydrogen batteries is that they take up less space and are safer than the lithium-ion batteries used in many homes today,” he said, adding that the system can actually store about seven times more energy than other that are currently available. Other advantages include a lifespan of about 30 years compared with under 10 for other systems and no fire risk.

On Tuesday, Professor Aguey-Zinsou said: “I am very excited to see the technology we developed in the lab here at UNSW scaled up and used in real-world applications. It will prove the feasibility of hydrogen storage at scale and position Australia to become a major player in transitioning to renewable energy.”

Construction will commence on the Manilla Solar Project in the second half of 2020 and is expected to be operational early 2021. The storage component will be installed during 2021.

 

Interested in how hydrogen storage can be incorporated into your solar facility? Schedule a call with us:

 

SCHEDULE A CALL WITH US

 

This article originally appeared on pv-magazine-australia.com, and has been republished with permission by pv magazine (www.pv-magazine.com and www.pv-magazine-australia.com.)

Read More

Solar-powered hydrogen production in Japan

Mar 17, 2020 9:15:00 AM / by Emiliano Bellini, pv magazine posted in Energy Storage, Markets, Decarbonize, Decarbonization, Asia, Hydrogen, Green Hydrogen, Grids, Integration, Industrial PV, Commercial PV, Japan, Utility Scale Markets

0 Comments

The solar-powered hydrogen facility owned by Toshiba in Namie, Fukushima prefecture, Japan.

Image: Toshiba

 

 

Japanese conglomerate Toshiba Corporation has announced its Fukushima Hydrogen Energy Research Field (FH2R) project, on which construction began in July 2018, is operational.

The solar-powered 10 MW hydrogen plant in Namie town, Fukushima prefecture, is said to be able to produce 1,200 normal cubic meters (Nm3) of hydrogen per hour.

The intermittent nature of solar generation prompted Toshiba to design the facility to be able to adjust to supply and demand in the grid, the company said.

“Hydrogen produced at FH2R will also be used to power stationary hydrogen fuel cell systems and to provide for … mobility devices, fuel-cell cars and buses and more,” Toshiba added. “The most important challenge in the current stage of testing is to use the hydrogen energy management system to achieve the optimal combination of production and storage of hydrogen and power grid supply-demand balancing adjustments without the use of storage batteries.”

Solar power

The plant is being powered by 20 MW of solar generation capacity as well as grid power. The hydrogen generated is being transported in trailers and hydrogen bundles to users elsewhere in the prefecture as well as the Tokyo metropolitan area and other regions.

In early January, Toshiba commissioned the H2One Station Unit, an energy storage system producing hydrogen at the Toyama City Environment Center in Toyama prefecture. According to the company, that kind of installation can be deployed easily and operated by customers such as factories, harbors, airports and bus depots. A similar facility was deployed at the end of December in Tsuruga City, in the Hokuriku region.

Toshiba’s energy system and solutions business began a demonstration of an holistic hydrogen supply chain for electricity generation in May 2018.

The multinational had announced in February 2016 it would place more emphasis on its energy and storage businesses following an accounting scandal which had prompted a restructure and losses of around $6 billion in 2015.

This article was amended on 10/03/20 to reflect the claimed hourly hydrogen production capacity is measured in normal cubic meters rather than newton meters, as previously reported.

 

This article originally appeared on pv-magazine-usa.com, and has been republished with permission by pv magazine (www.pv-magazine.com and www.pv-magazine-usa.com).

Read More

Horizon Power looks at green hydrogen for WA coastal town of Denham

Feb 20, 2020 9:15:00 AM / by Marija Maisch, pv magazine posted in Community, Energy Storage, Installations, Australia, Grids, Integration, Technology, Western Australia, Sustainability

0 Comments

The Denham hydrogen plant will be powered by solar.

Image: Horizon Power

 

The coastal town on Denham could be on the way to become zero emissions thanks to a green hydrogen demonstration project proposed by WA’s regional utility Horizon Power. The hydrogen plant powered by solar energy will supplement existing wind turbines, which already produce 60% of the town’s electricity.

Located in the Shark Bay World Heritage Area, Denham’s existing power supply is a combination of a Horizon Power owned and operated diesel facility, and a Synergy wind farm. Both assets are aging and in need of replacement.

Horizon Power has sought expressions of interest from companies for the supply of the hydrogen electrolyser and fuel cell and to design and construct of the plant. It is also looking at state and federal funding for the trial, while supporting the State Government’s Renewable Hydrogen Strategy by investigating the possibility of demonstrating the use of hydrogen as a future source of energy for the town.

“As part of our commitment to deliver cleaner, greener energy to our regional customers, we want to investigate the potential to develop a hydrogen demonstration plant to test the suitability and capability of hydrogen as a renewable energy source for electricity generation in the future,” Horizon Power Chief Executive Officer Stephanie Unwin said.

If the project is determined to be viable, construction would begin in February 2021. “Proving the reliability of such a hydrogen plant provides the opportunity to expand the plant to supply the full power requirements for the town in the future,” Urwin added.

Last year, the WA Government launched a strategy to set course for the state’s renewable hydrogen future with a focus on four strategic investment areas: export, use of renewable hydrogen in remote applications, blending in the gas network and use in transport. To support projects on ground, the authority last month opened a $10 million Renewable Hydrogen Fund and made cash available to feasibility studies, demonstration or capital works projects, to facilitate private investment.

Last week, the state government set aside $1.68 million in funding from the Renewable Hydrogen Fund toward the support of seven renewable hydrogen feasibility studies, including an electrolysis production plant and solar hydrogen for waste collection.

“Western Australia needs to explore how we can produce, use and provide energy to our international partners through clean and reliable sources – renewable energy via hydrogen provides a means to do this,” Regional Development Minister Alannah MacTiernan said. She noted the government received 19 feasibility study applications of which it chose seven, which confirmed the strong interest of developing a renewable hydrogen industry in WA.

On the ground, Canadian gas giant ATCO is already blending renewable hydrogen into the on-site natural gas network at its solar and battery hydrogen innovation hub in WA. The blend will be used throughout the Jandakot depot as the first step in exploring the potential of hydrogen for home use in gas appliances.

Last year, a massive green hydrogen production project was unveiled for Western Australia with Siemens on board as technology partner. The project proposed by Hydrogen Renewables Australia (HRA) aims to produce green hydrogen for local industry and export to Asia from up to 5,000 MW of combined wind and solar capacity.

 

This article originally appeared on pv-magazine-australia.com , and has been republished with permission by pv magazine (www.pv-magazine.com and www.pv-magazine-australia.com ).

Read More

Australia’s National Hydrogen Strategy adopted, funds for new projects allocated

Jan 28, 2020 8:35:00 AM / by Marija Maisch, pv magazine posted in Policy, Markets, Utility-Scale PV, Installations, Decarbonize, Fossil Fuels, Coal, Decarbonization, Hydrogen, Green Hydrogen, Highlights, World, utility scale storage, Australia, Grids, Integration, Technology

0 Comments

 

At the Friday meeting in Perth, the COAG Energy Council agreed to the National Hydrogen Strategy, which is expected to pave the way for a hydrogen economy that would enhance Australia’s energy security, create jobs and build an export industry valued in billions. The federal government used the meeting to announce $370 million would be directed to a new fund aimed at developing Australia’s hydrogen industry.

The money to bankroll green hydrogen projects will come from existing allocations to the Clean Energy Finance Corporation (CEFC) and Australian Renewable Energy Agency (ARENA), with the former tipping in $300 million and the latter $70 million. According to Energy Minister Angus Taylor, the funding will help Australia to realise its potential as a leading hydrogen supplier to key export markets, particularly in Asia.

Despite positive aspects, the National Hydrogen Strategy remains “technology-neutral”, with both hydrogen produced using renewable energy and the one via fossil fuels with “substantial” carbon capture and storage (CCS) in the game. Throughout the consultation process, Australia’s Chief Scientist Alan Finkel continued to push Australia toward hydrogen produced by solar and wind, but also remained attached to the fossil fuel-CSS idea. The stance was reflected in the Strategy itself.

Notwithstanding the efforts by ACT Energy Minister Shane Rattenbury on Friday to change the strategy so it only supported green hydrogen, federal resources minister Matt Canavan said after the meeting the government would be encouraging all forms of hydrogen creation, including production using brown coal.

“We have a really challenging task to bring down the costs of supplying hydrogen to the world,” he said. “Getting all of those costs down means trying different things at the moment and it’s not the time to foreclose different ways of producing hydrogen which would limit our ability to reduce those costs in the supply chain.”

However, the good news is that the Strategy also envisaged the development of a hydrogen certification scheme that will show the emissions intensity of hydrogen produced in Australia. With such transparency, prospective importers will be aware of the environmental impacts of the hydrogen they use. And Australia expects to have many trading partners, particularly in Asia, including China, South Korea, Japan and Singapore, which are already looking to develop hydrogen economies.

As established in previous studies, capitalising on the growing demand for hydrogen could result in an export industry worth $1.7 billion by 2030, and could provide 2,800 jobs, most likely regional ones. On top of this, two international reports have confirmed Australia’s potential as a future major hydrogen supplier. The World Energy Council identified Australia as a ‘giant with potential to become a world key player’, while the International Energy Agency projected that Australia could easily produce 100 million tonnes of oil equivalent of hydrogen, which could replace 3% of global gas consumption today.

Overhigh expectations?

However, a report by The Australia Institute (TAI) released in the run-up to the COAG meeting found the projected demand for hydrogen had been overstated. The think-tank argued the hydrogen export projections from consulting firm ACIL Allen, which the government is referring to, were 11 times higher than Japan’s official target, noting that even the low demand projection is two and half times the official target. The projections for South Korea are similarly high by comparison with government plans.

“Prematurely establishing a hydrogen export industry based on highly inflated demand figures may lock out the cleanest form of hydrogen, using renewable energy and electrolysis, because the technology isn’t cost competitive at this stage,” said Richie Merzian, Climate & Energy Program Director at TAI.“If hydrogen development is rushed in Australia it could see fossil fuels locked in as a global energy source for decades to come. The emissions will make it impossible to comply with Australia’s obligations under the Paris Agreement.”

According to a recent analysis from Wood Mackenzie, green hydrogen, produced primarily by solar electrolysis, will reach cost parity in Australia by 2030 based on US$30/MWh renewable electricity and 50% utilisation hours for electrolysers. But, the Hydrogen Strategy sets a vision for Australia to already become a major global player by that point. Meanwhile, CCS continues to be a costly option in Australia and across the world and often just an excuse to avoid taxing carbon and pull support from renewable energy technologies.

“A decade ago the fossil fuel industry promoted clean coal using CCS and now it is promoting hydrogen using the same unsuccessful technology. CCS projects have repeatedly failed to live up to promises, both domestically and globally, and missed their targets by a very large margin time and time again,” Merzanin said. “The only way to make hydrogen truly sustainable is to produce it using water and powered by renewable energy sources. Australia has time to establish and lead a global renewable hydrogen industry and should focus research and development efforts in that area exclusively.”

 

This article originally appeared on pv-magazine-australia.com and has been republished with permission by pv magazine (www.pv-magazine.com and www.pv-magazine-australia.com

Read More

Lists by Topic

see all

Posts by Topic

See all

Recent Posts