Breiter Planet Hydrogen Blog

Emiliano Bellini, pv magazine


Recent Posts

Novel algorithm for integrating solar, wind, hydrogen

Feb 11, 2021 9:30:00 AM / by Emiliano Bellini, pv magazine posted in Policy, Markets, Utility-Scale PV, Hydrogen, Green Hydrogen, utility scale storage, Technology, Markets & Policy, Technology & R&D, Saudi Arabia, Egypt

0 Comments

The proposed algorithm was validated on a hybrid system for application in both off-grid and on-grid scenarios.

Image: Frerk Meyer/Flickr

 

Researchers from Saudi Arabia's Qassim University and the Minia University, and the Aswan University in Egypt, have developed a new model to integrate PV, wind, and hydrogen generation in a hybrid system for application in both off-grid and on-grid scenarios.

The model is based on a metaheuristic algorithm called Improved Artificial Ecosystem Optimization (IAEO), which the scientists claim is an improved version of the conventional Artificial Ecosystem Optimization (AEO) algorithm. The latter is a nature-inspired algorithm known for mimicking three typical behaviors of living organisms, such as production, consumption, and decomposition.

The producers are any kind of green plant and consumers are animals that cannot make their food and, therefore, obtain it from a producer or other consumers. Decomposers are agents that feed on both producers, in the form of dead plants, and consumers, in the form of waste from living organisms. In an AEO algorithm, there is only one decomposer and one producer, and the other individuals are considered consumers.

The AEO works according to these three phases and is commonly used to optimize the flow of energy in an ecosystem on the earth. “The ecosystem can be expressed as a group of living organisms [which] live in a certain space, and the ecosystem describes the relations between them,” the researchers said, adding that IAEO is mainly intended at improving the consumption phase.

The proposed energy system consists of PV and wind power generation, a water electrolyzer, a tank of hydrogen gas, a fuel cell, and an inverter that brings the generated electricity to final consumers. “The hybrid system is suggested to be located in [the] Ataka region, [in the] Suez gulf (latitude 30.0, longitude 32.5), Egypt, and the whole lifetime of the suggested case study is 25 years,” the scientists specified.

 

 

In this configuration, which the academics have assessed for both off-grid and grid-connected projects, wind and solar plants are used to power the electrolyzer that produces hydrogen, which is then stored in the tank and used to produce electricity through the fuel cell. The inverter receives electricity from the fuel cell and also surplus power from the wind and solar facilities. “When the level of hydrogen in the tank becomes below the lowest allowable level, the shortage in the electrical energy required to store the hydrogen gas in the tank is dispatched from the national grid,” they further explained.

Both the IAEO and conventional AEO algorithms were applied for generating the optimal design for the system. “In the case of the isolated configuration, when the electrical power produced from PV and wind resources is higher than the load needs plus the rated power of the electrolyzer, a dummy load is used for generation-demand balance,” the Saudi-Egyptian group stated.

The IAEO algorithm was validated in six different configurations of the proposed hybrid system and, according to the research team, has provided better results not only compared to the AEO, but also to other kinds of algorithms. “The proposed IAEO algorithm provides fast convergence characteristics, the best minimum values of the objective function, and minimum cost of energy,” it concluded. “Based on the optimal configuration of the hybrid systems, it is found that the fuel cell system has the highest contribution to the net present cost.”

 

This article originally appeared on pv-magazine-usa.com, and has been republished with permission by pv magazine (www.pv-magazine.com and www.pv-magazine-usa.com).

 

The model was presented in the paper An improved artificial ecosystem optimization algorithm for optimal configuration of a hybrid PV/WT/FC energy system, published in the Alexandria Engineering Journal.

 

 

Read More

Global green hydrogen project pipeline reaches 50 GW

Sep 14, 2020 10:00:00 AM / by Emiliano Bellini, pv magazine posted in Policy, United States, Energy Storage, Markets, Germany, Hydrogen, Europe, Spain, Green Hydrogen, China, Global, World, utility scale storage, Grids, Integration, Sustainability, Japan, Hydrogen Production, Markets & Policy, Hydrogen Economy, Saudi Arabia, South Korea

0 Comments

The world already has a nascent hydrogen economy, according to IEEFA.

Image: Roy Luck/Flickr

 

The Institute for Energy Economics and Financial Analysis (IEEFA) estimates there are 50 green hydrogen projects under development worldwide. Those projects, have a planned annual production capacity of 4 million tons of hydrogen and a total renewable power capacity of 50 GW, according to the Ohio-based thinktank, with their combined capital cost estimated at $75 billion.

In its Asia, Australia and Europe Leading Emerging Green Hydrogen Economy, but Project Delays Likely study, IEEFA said the projects announced represent an embryonic global green hydrogen economy.

“Most of these 50 projects are at an early stage, with just 14 having started construction and 34 at a study or memorandum-of-understanding stage,” the report noted. “However, many of the 50 newly-announced green hydrogen projects could face delays due to uncertain financing, cumbersome joint venture structures and unfavorable seaborne-trade economics.”

The study stated the majority of the projects announced will begin commercial operation in the middle of the decade, with large scale facilities starting up in 2022-23 and 2025-26.

The report’s authors said the hydrogen strategies of China, Japan and South Korea appear to prioritize hydrogen generated using natural gas – designated grey hydrogen, or blue if facilities are intended to feature carbon capture technology – rather than ‘green’ hydrogen generated using renewable energy. IEEFA described the €430 billion ($507 billion) hydrogen strategy of the European Union as the the most ambitious and purposeful energy transition policy to date.

 

“The EU’s hydrogen capex [capital expenditure] commitment far outweighs the commitment from Korea and Japan, reflecting the EU’s ambition to remodel its energy system and vertically integrate the hydrogen value chain with wind and solar power, electrolysis, distribution and applications,” stated the report.

Annual green hydrogen demand could reach 8.7 million tonnes by 2030, according to the IEEFA study, prompting a big supply shortfall given the current capacity of the project pipeline.

The report lists all publicized projects, including five facilities announced in the last two months – an 85 MW Nikola Motor Company plant in the U.S.; a 4 GW facility in Saudi Arabia planned by Air Products, Acwa Power and Neom; a 20 MW electrolyser being developed by U.S. energy company NextEra; a 100 MW solar park, storage facility and hydrogen production site in Puertollano, central Spain, by Iberdrola; and a 30 MW electrolyzer project by German consortium WestKüste100.

“There remains ample room for more hydrogen projects to meet global demand and further policy support will be necessary to grow this nascent industry,” added the report’s authors.

 

Schedule a Call with us today to see how we can work together and help transition to a clean energy economy.

SCHEDULE A CALL WITH US

 

Read More

A perovskite electrode to improve hydrogen production

May 29, 2020 9:15:00 AM / by Emiliano Bellini, pv magazine posted in Decarbonize, Decarbonization, Hydrogen, Green Hydrogen, Electrification, Electrolysis, Hydrogen Production, Technology & R&D, Idaho

0 Comments

Idaho-based researchers used a perovskite oxide to make an oxygen electrode for hydrogen production.

Image: JOHN LLOYD/Flickr

 

Scientists at the U.S. Department of Energy’s Idaho National Laboratory (INL) have used an oxide of perovskite to create an oxygen electrode for use in electrochemical cells used for hydrolysis-based hydrogen production.

The researchers claim the perovskite oxide could help such cells convert hydrogen and oxygen into electricity without additional hydrogen.

Described in the study Self-sustainable protonic ceramic electrochemical cells using a triple-conducting electrode for hydrogen and power production  published in Nature Communications – the electrode has triple-conducting properties and superior electrochemical performance at around 400-600 degrees Celsius, according to the research group.

The electrode was used in an electrochemical cell which uses electricity to split steam into hydrogen and oxygen.

Reversible operation

“The protonic ceramic electrochemical cell (PCEC) is a proton-conductor-based solid oxide cell that can serve in a reversible-operation manner to store renewable energies, using water electrolysis to produce hydrogen and then convert it back to electricity in fuel cell mode,” the INL scientists said.

Such cells offer low-cost energy storage and conversion at reduced temperatures with high efficiency and durability. However, using robust electrodes under high-steam concentration can prove problematic. “The high temperatures require expensive materials and result in faster degradation, making the electrochemical cells cost-prohibitive,” the researchers stated.

A triple-conducting oxide of the perovskite PrNi0.5Co0.5O3-δ (PNC) was used by the researchers to build an electrode with a 3D mesh-like architecture which made more of its surface area available to split water into hydrogen and oxygen.

“A self-architectured, mesh-like electrode is synthesized to construct a highly porous frame for enhanced mass transport,” the scientists said. “When this nanostructured electrode is incorporated into the cell … better performance is obtained.”

Performance

The INL group said the innovation improved performance due to the electrode’s improved concentration polarization resistance, and reaction kinetics at an interface attributable to high porosity and fine nanoparticles.

The two technologies – the mesh structure and new electrode material – enabled self-sustainable, reversible operation at 400-600 degrees Celsius, the group claimed. “We demonstrated the feasibility of reversible operation of the PCEC at such low temperatures to convert generated hydrogen in hydrolysis mode to electricity – without any external hydrogen supply – in a self-sustaining operation,” said Dong Ding, from the INL group.

The researchers said the electrode’s ultra-porous structure could be studied further in order to be optimized by changing the treatment temperature to compromise between porosity and active sites.

The INL team in September 2018 developed a ceramic steam electrode to demonstrate efficient hydrogen electrolysis at temperatures far lower than those previously possible.

 

This article originally appeared on pv-magazine-usa.com, and has been republished with permission by pv magazine (www.pv-magazine.com and www.pv-magazine-usa.com).

Read More

Solar-powered hydrogen production in Japan

Mar 17, 2020 9:15:00 AM / by Emiliano Bellini, pv magazine posted in Energy Storage, Markets, Decarbonize, Decarbonization, Asia, Hydrogen, Green Hydrogen, Grids, Integration, Industrial PV, Commercial PV, Japan, Utility Scale Markets

0 Comments

The solar-powered hydrogen facility owned by Toshiba in Namie, Fukushima prefecture, Japan.

Image: Toshiba

 

 

Japanese conglomerate Toshiba Corporation has announced its Fukushima Hydrogen Energy Research Field (FH2R) project, on which construction began in July 2018, is operational.

The solar-powered 10 MW hydrogen plant in Namie town, Fukushima prefecture, is said to be able to produce 1,200 normal cubic meters (Nm3) of hydrogen per hour.

The intermittent nature of solar generation prompted Toshiba to design the facility to be able to adjust to supply and demand in the grid, the company said.

“Hydrogen produced at FH2R will also be used to power stationary hydrogen fuel cell systems and to provide for … mobility devices, fuel-cell cars and buses and more,” Toshiba added. “The most important challenge in the current stage of testing is to use the hydrogen energy management system to achieve the optimal combination of production and storage of hydrogen and power grid supply-demand balancing adjustments without the use of storage batteries.”

Solar power

The plant is being powered by 20 MW of solar generation capacity as well as grid power. The hydrogen generated is being transported in trailers and hydrogen bundles to users elsewhere in the prefecture as well as the Tokyo metropolitan area and other regions.

In early January, Toshiba commissioned the H2One Station Unit, an energy storage system producing hydrogen at the Toyama City Environment Center in Toyama prefecture. According to the company, that kind of installation can be deployed easily and operated by customers such as factories, harbors, airports and bus depots. A similar facility was deployed at the end of December in Tsuruga City, in the Hokuriku region.

Toshiba’s energy system and solutions business began a demonstration of an holistic hydrogen supply chain for electricity generation in May 2018.

The multinational had announced in February 2016 it would place more emphasis on its energy and storage businesses following an accounting scandal which had prompted a restructure and losses of around $6 billion in 2015.

This article was amended on 10/03/20 to reflect the claimed hourly hydrogen production capacity is measured in normal cubic meters rather than newton meters, as previously reported.

 

This article originally appeared on pv-magazine-usa.com, and has been republished with permission by pv magazine (www.pv-magazine.com and www.pv-magazine-usa.com).

Read More

Lists by Topic

see all

Posts by Topic

See all

Recent Posts